0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 柔性金属空气电池研究进展及未来展望

柔性金属空气电池研究进展及未来展望

2017-09-19
类别:行业趋势
eye 699
文章创建人 拍明


随着柔性和可穿戴电子设备的发展,柔性储能器件吸引了科研界及工业界的广泛关注。近年来,围绕柔性和超级电容器开展了一系列工作,并且取得了重要进展。然而,为了延长电子设备的续航时间,需要储能系统有着更高的能量密度。可循环充放电的金属空气电池由于其远高于目前锂离子电池的理论能量密度,被认为是将来最具有前景的储能装置。开发柔性金属空气电池无疑将极大提高柔性和可穿戴电子设备的续航能力,但是也需要解决更多的挑战。一方面,电池的能量密度、能量效率以及循环寿命都需要提高;另一方面,电极结构、电解液材料以及电池构造都需要进行优化,以在形变条件下保持稳定的电化学性能。

2017年9月14日,Energy Environ. Sci.期刊在线发表了由香港理工大学倪萌教授课题组谈鹏博士(第一作者)联合美国佐治亚理工刘美林教授、南京工业大学及澳大利亚科廷大学邵宗平教授撰写的综述论文“Flexible Zn- and Li-Air Batteries: Recent Advances, Challenges, and Future Perspectives”。文章介绍近年来以锌空气电池和锂空气电池为主的柔性金属空气电池的结构设计、电极及电解质材料开发以及运行条件管理方面的进展,并对未来研究方向进行了探讨和展望。

柔性金属空气电池结构图.png

柔性金属空气电池

一、概述

相比于锂离子电池,金属空气电池有着极高的理论容量和能量密度而引起了广泛的研究关注,如图1所示。其中,碱性体系的可充电锌空气电池和有机体系的锂空气电池作为水系和非水系体系的典型代表更是近期研究的热点。电池的工作原理如图2所示。当将电池制备成柔性,需要设计新的柔性结构,制备柔性的电极材料和固态电解质膜,从而面对更多的挑战。

不同金属空气电池的容量、能量密度和电压对比.png

图1 不同金属空气电池的容量、能量密度和电压对比

碱性体系锌空气电池和非水体系锂空气电池的工作原理示意图.png

图2 碱性体系锌空气电池和非水体系锂空气电池的工作原理示意图

二、柔性电池结构及测试

目前,在柔性锌空和锂空电池中广泛采用的电池结构是将柔性正极、电解质膜和负极叠加组成的三明治结构。另一种则是采用线状的金属电极,在表面依次包裹电解质层和空气电极层组成管状结构。此外,还有一些新的结构,例如可以折叠的电池结构和受竹简启发制成的柔性超轻便锂空气电池。

针对柔性电池的测试除了常规电池中的充放电和循环寿命测试,在外力下的稳定性至关重要。主要包括弯曲、扭曲不同的角度下和拉伸不同长度下的电化学稳定性以及在长期疲劳下的性能保持性。

三、金属电极

在柔性空气电池中通常直接使用金属片作为电极。但是金属片在长期弯曲中可能出现疲劳失效。在柔性锌空电池中,有将金属粉末和粘结剂、导电碳粉组合形成复合电极,提高了电极的柔性和稳定性。在柔性锂空电池中,有将金属锂和不锈钢网滚压在一起,以提高金属电极抗疲劳性。另外,为了实现柔性电池一定的拉伸性,可以将金属电极制成弹簧状,或者将多片小块的金属联合成一个完整电极,通过“化整为零”满足拉伸的需要。

四、电解质膜

在柔性锌空气电池中,主要采用阴离子交换膜和碱性凝胶电解质作为电池的电解质膜。在柔性锂空气电池中,电解质膜主要包括凝胶、固体和复合聚合物电解质膜。为了实现柔性电池良好的电化学性能,除了要求电解质膜具有良好的电导率、化学和电化学稳定性等传统液体电解质的性质外,与金属和空气电极的界面问题是需要解决的难题。

对电解质膜-金属电极界面来说,需要克服枝晶及表面钝化的问题。对于电解质膜-空气电极界面来说,固体电解质大大减少了有效反应界面。对于锂空气电池来说,由于产物是固态的过氧化锂,进一步加剧了反应面积的衰减。从而,需要有效的方法来增加反应界面。

此外,在电池弯曲或扭曲的过程中,由于电极和电解质膜力学性质的不同,可能会导致电极和电解质膜的分离。如何维持界面的稳定是保证电池得以长期稳定运行的关键。

五、空气电极

空气电极作为金属空气电池的重要组件,一直是研究的热点。一方面,需要有效的催化剂实现电池的快速充放电;另一方面,需要有合适的结构保证氧气的传输。在柔性电池中,更需要电极具有良好的柔韧性满足形变的需要。目前,主要的柔性电极包括:一、以碳布或者碳纤维编制的网组成的电极;二、以纳米碳材料(如碳纳米管、石墨烯)组成的如碳纳米管纸、石墨纸电极;三、金属基体如不锈钢网、镍网形成的电极;四、其他一些新型柔性电极。

六、运行管理

通常,锌空气电池直接在空气中运行,而锂空气电池在氧气中运行。而运行条件会严重影响电池的性能。首先,空气中的水分会影响电解质膜的稳定性,而空气中的二氧化碳有着更大的影响:在锌空气电池中会形成碳酸盐,影响电解质的电导率;在锂空气电池中形成固体副产物碳酸锂,影响电池的充电性能。其次,电池性能通常是在室温环境下测试的,而在实际使用时温度却有着较大的变化。例如在可穿戴设备上,由于和人体接触,电池的运行温度可能会提升至三十度或者更高。而在不同的季节和地区,温度的变化将会更大。因此,未来的电池测试需要更详细的考察在不同气体氛围和温度下的稳定性,并且采用合适的管理措施。

七、总结与展望

近年来,在柔性金属空气电池上取得了一系列进展,电池的能量密度、效率以及循环寿命都有了大幅的提示。未来的研究需要进一步解决下列问题:一、新型的电池结构设计,满足各种形变条件下保持稳定的电化学性能;二、评价标准的建立,将电池性能的考核指标规范化,例如基于统一的质量或体积,规定公认的柔性测试标准(例如弯曲和扭曲角度、拉伸长度、疲劳测试等);三、柔性组件的开发,包括金属和空气电极、电解质膜、集流体以及封装材料等;四、运行条件的管理,保证在不同条件下都能提供稳定的电化学性能。

总而言之,未来的研究需要采用实验在线监测与数值模拟等多种技术手段相结合的方式,清晰地阐明在电池运行中的物质传输、结构变化和电化学反应之间的关系,为合理设计电池提供重要的指导。

柔性电池的未来展望

随着电子技术的快速进步,越来越多的电子设备正在向着轻薄化、柔性化和可穿戴的方向发展。

近年来,随着电子技术的快速进步,越来越多的电子设备正在向着轻薄化、柔性化和可穿戴的方向发展,例如三星和LG等公司都推出了曲面屏手机,并且正在计划研制可折叠、可弯曲的新一代产品。

柔性电池.png

目前发展柔性电子技术最大的挑战之一就是与之相适应的轻薄且柔性的电化学储能器件。传统的锂离子电池、超级电容器等产品是刚性的,在弯曲、折叠时,容易造成电极材料和集流体分离,影响电化学性能,甚至导致短路,发生严重的安全问题。因此为了适应下一代柔性电子设备的发展,柔性储能器件成为了近几年的研究热点。

可伸缩储能器件发展历程,图片来源:Adv. Mater.

近日,斯坦福大学的崔屹课题组在Adv. Mater.上发表综述,总结了近年来柔性储能器件和可伸缩储能器件的发展情况。

blob.png

崔屹教授,图片来源:Stanford University

锂离子电池能量密度高,具有良好的循环性能,稳定性好,是发展柔性储能器件最理想的候选。而超级电容器具有高功率密度,能实现大电流快速充放电,使用寿命长等优异性能,可以弥补锂电池的不足。目前,柔性锂离子电池和超级电容器面临三个问题:1)柔性电极的设计和制备;2)弯曲折叠过程中器件电化学性能的稳定性;3)高能量密度和高功率密度。本文着重介绍了锂离子电池和超级电容器在柔性化方面的最新进展和面临的挑战。

blob.png

柔性锂离子电池

先来看一下商用锂离子电池的基本结构。如图,正负极由活性电极材料、导电剂(如碳黑)、粘结剂(如聚偏氟乙烯)和集流体(如铜箔、铝箔)组成。当电池弯曲时,电极材料和集流体易发生分离,轻则接触不良,重则造成短路。因此,怎么样才能防止电极材料和集流体分离是电池柔性化研究的第一步。

blob.png

锂离子电池示意图

思路1:二维“纸电极”

纸张是有柔韧性的,要是能把电极材料和集流体合二为一变成一张纸,问题不就解决了么?载有活性材料的碳纸、碳纳米管(CNT)纸、石墨烯纸被纷纷报道,制备方法也是多种多样,从简单的涂布法到真空抽滤法,再到复杂的CVD、原位水热沉积等等。

blob.png

碳纸,图片来源:PNAS

blob.png

CNT纸,图片来源

blob.png

真空抽滤法

思路2:“海绵电极”

活性材料填在多孔电极的孔隙中,即不容易脱离,又能解决充放电过程中活性材料的膨胀问题。

思路3:“织物电极”

碳纤维织物也是良好的集流体,在表面沉积活性物质,不但能实现柔性化,还可以减少粘合剂的使用。

几种二维电极虽然能解决柔性电极的问题,但提高活性比表面积和导电率进而提高电池比容量又成为了电极材料和结构设计的主要挑战。因此出现了各种具有高性能的三维电极,包括阵列结构、线型结构、多孔支架等。

blob.png

三维电极结构,图片来源:Adv. Mater.

再来看看电解质的问题,目前广泛使用的液体电解质具有易泄漏、易燃和化学稳定性差等缺点,更使柔性电池的可弯曲性受到了很大的限制。而近年来发展起来的固体电解质恰好解决了传统的液体电解质稳定性差的问题,大大提高了锂电池的安全性,也有利于柔性锂电池的机械性能。这里,值得一提的是,Sang Young Lee的小组报道的柔性全固态电池,这种电池通过模板印刷工艺“打印”出来,可以形成复杂的几何形状。

此外,锂硫电池、锂氧电池以及钠电等新型电池也加入到了柔性化的研究中。

blob.png

可打印柔性全固态电池制造过程示意图,图片来源:Adv. Mater.

柔性超级电容器

详细的看完柔性锂电池,我们再来简单的看看柔性超级电容器的发展。研究者从二维层间柔性电极结构、二维平面电极结构、三维电极结构三个方面总结了柔性超电的发展。其中,比较有趣的一篇是以石墨烯为基面通过等离子体刻蚀法制备的叉指型微型超级电容器。

blob.png

兼具柔性和透明性的微型超级电容器,图片来源:Adv. Mater.

可伸缩锂离子电池

在过去十年柔性电极发展的同时,可伸缩的基础技术也在发展。然而,直到2009年,可伸缩技术才从医学植入研究扩展到了可伸缩储能器件的研究。相比于柔性器件,可伸缩储能器件对结构和材料设计有更高的要求。通常,可伸缩器件主要有两种方式:一种是材料(电极和电解质)本身具有弹性,另一种是通过设计新型结构使刚性组分具有可伸缩能力。目前对于电池和电容器而言,后者比前者更容易实现,因为弹性有机活性物质制备的电极其电化学性能还远远无法和传统材料相比。

blob.png

“多孔框架结构”可伸缩电极,图片来源:Adv. Mater.

设计新型结构,主要包含三种:多孔框架结构、波浪结构、螺旋弹簧结构。其中多孔框架结构的研究最多,然而最大拉伸倍率一般都不超过100%。波浪结构和螺旋弹簧结构设计难度更大,但拉伸倍率也相对大很多。2013年,美国西北大学的黄永刚教授和美国伊利诺伊大学的John A. Rogers在Nat. Commun.杂志上发表的“Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems”是比较早的(印象中是第一篇)这种电极结构的报道了(Nat. Commun.,2013,4, 1543)。

blob.png

可伸缩电池照片及结构示意图,图片来源:Nat. Commun.

同样比较有名的应该属复旦大学的彭慧胜课题组的研究了。2015年在Adv. Mater.杂志上发表的工作,“A Gum-Like Lithium-Ion Battery Based on a Novel Arched Structure”通过聚合物实现了电池的伸缩性(Adv. Mater.,2014,26, 1217)。随后,2016年,他们又在Angew. Chem. Int. Ed.和JMCA杂志上发表工作,制备了基于纤维状结构的可伸缩锂电池和铝空气电池。

blob.png

波浪型电池,图片来源:Adv. Mater.

blob.png

图片来源:Angew. Chem. Int. Ed.

blob.png

图片来源:JMCA

可伸缩超级电容器

同样地,详细地说完可伸缩型锂电池,我们再简单的看看可伸缩超级电容器的研究。相对于锂电池,超级电容器的制备相对容易,因此新颖的电极结构迅速应用于其中,主要包括波浪/块体结构、线型结构、织物结构等。

blob.png

两种纱线组成的网状编织结构电池,图片来源:Adv. Mater.

总结与展望

锂离子电池和超级电容器已经广泛的应用于实际中,同时,近年来在柔性和可伸缩储能器件的材料探索、结构设计、制造方法和集成组装方面也取得很大的进展。实现柔性和可伸缩性储能器件主要可以从新结构的设计和柔性材料的探索两个方向着手。目前,碳基材料,包括CNF、CNT、石墨烯、石墨烯及其复合材料,正在取代传统的铜箔和铝箔作为集流体,并负载活性物质,用来制备可弯折的柔性锂离子电池和超级电容器。同时,“纸电极”、海绵状、多孔框架、螺旋弹簧等多种多样有趣的电极结构设计,也促进了柔性储能器件的发展。

当然,要实现柔性储能器件的实际应用还有很多问题和挑战。例如探索低成本、大规模的工业生产技术,提高柔性装置的循环稳定性等等。未来柔性储能器件的发展可能会集中在以下几个方面:

1)电极材料研究。通过开发新材料或者复合材料,来进一步提高电极的电导率和电化学稳定性,同时增加比容量和能量密度;

2)固态电解质的开发。寻找离子迁移数高、电导率高、与电极材料相容性好的固态电解质,增强固态电解质的导电率,提高电池安全性能和机械性能;

3)减少集流体、粘结剂及导电剂。不但能够提高储能器件的能量密度,还能促进柔性电极的发展;

4)电极结构的设计。从简单的纸张型、织物型到复杂的弹簧型、波浪型电极,新颖的设计层出不穷;

5)新的生产工艺。从传统的涂布卷绕工艺到沉积、刻蚀、喷墨打印等技术的应用,柔性储能器件正在向精细化发展。





责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 电池

相关资讯