0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >基础知识 > 半导体材料市场前景应用分析

半导体材料市场前景应用分析

2017-09-12
类别:基础知识
eye 184
文章创建人 拍明
  半导体材料升级换代。作为集成电路发展基础,半导体材料逐步更新换代,第一代半导体材料以硅(Si)为主导,目前,95%的半导体器件和 99%以上的集成电路都是硅材料制作。下面就随半导体设计制造小编一起来了解一下相关内容吧。

  半导体材料升级换代。作为集成电路发展基础,半导体材料逐步更新换代,第一代半导体材料以硅(Si)为主导,目前,95%的半导体器件和 99%以上的集成电路都是硅材料制作。20 世纪 90 年代以来,光纤通讯和互联网的高速发展,促进了以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料的需求,其是制造高性能微波、毫米波器件及发光器件的优良材料,广泛应用于通讯、光通信、GPS 导航等领域。第三代半导体材料主要包括碳化硅(SiC)、氮化镓(GaN)、金刚石等,因其禁带宽度(Eg)大于或等于2.3 电子伏特(eV),又被称为宽禁带半导体材料。

半导体材料及用途

  半导体材料及用途

  国内半导体材料市场高速增长。半导体材料市场会根据半导体行业的变化而变化。目前,2015 年全球半导体材料市场产值已达到 434 亿美元,约占据整体产业的 13%,其规模巨大。国内半导体材料市场近年来受产业链增长拉动,半导体材料销售额保持较高增速,2006-2015 年保持平均 14%的增长率。2015 年已经达到 61.2 亿美元的规模,且占有率有持续增长的趋势。预计随着全球半导体产业向大陆转移,日本、台湾等占有率将有所下降,而大陆半导体材料市场将会进一步扩大。

2010-2015年全球半导体材料市场销售额

  2010-2015年全球半导体材料市场销售额

2015 年全球各地区半导体材料市场占比

  2015 年全球各地区半导体材料市场占比

  主攻新一代半导体材料及集成电路。我国第一代、第二代半导体材料及集成电路产业与国际水平差距较大,而在第三代半导体领域的研究工作一直紧跟世界前沿,工程技术水平和国际先进水平差距不大,已经发展到了从跟踪模仿到并驾齐驱、进而可能在部分领域获得领先和比较优势的阶段,并且有机会实现超越。

  新一代半导体应用领域广泛 ,潜在市场空间大。第二三代半导体材料正在引起清洁能源和新一代电子信息技术的革命,无论是通信、照明、消费电子设备、新能源汽车、智能电网、还是军工用品,都对这种高性能的半导体材料有着极大的需求。未来第三代半导体技术的应用将催生我国多个领域的潜在市场,届时将产生巨大的市场应用空间。

砷化镓微波功率半导体各应用领域占比

  砷化镓微波功率半导体各应用领域占比

  通信应用 :5G技术引领通信革命,推动砷化镓半导体市场

  通信技术更新换代,传输速度呈数量级增长 。从上世纪 80 年代至今,每一代移动通信标准都有着其标志性的能力指标和核心关键技术。1G 只能提供模拟语音业务;2G的 GSM 网络可提供数字语音和低速数据业务;3G 以 CDMA 为技术特征,用户峰值速率达到 2Mbps 至数十 Mbps,可以支持多媒体数据业务;4G LTE 网络用户峰值速率可达 100Mbps 以上,能够支持各种移动宽带数据业务。

  5G 技术将引领新革命。相比前四代通讯技术,5G 网络的变革将更加全面,在进一步提高通讯传输速度的同时,更加强调连续广域覆盖、热点高容量、低时延高可靠和低功耗大连接等场景下的技术需求,为进一步升级的移动互联网市场,和新兴的物联网、智能汽车、智能制造、虚拟现实等市场提供多元化的技术方案。目前国际主流的行业组织、运营商、设备厂商和芯片厂商都在积极投入 5G 标准的制定,预计到 2020 年前后,5G 网络将实现商用。

历代通讯技术发展

  历代通讯技术发展

  5G 技术需要海量新型半导体产品支撑 。每一代通讯标准的升级都伴随着通讯芯片厂商的起起落落,如 3G 网络直接带来了高通的崛起,同时也伴随着摩托罗拉通讯芯片业务(后拆分为 Freescale)的衰落;4G 时代,高通、联发科、海思、展讯等茁壮成长。

  未来,5G 网络的商用必然将催生移动通信芯片升级换代的海量市场,同时也将带来通讯芯片市场版图的巨大变化。5G 技术高速率和低延迟的要求,对化合物半导体提出了新的需求。比如功率、线性度、工作频率、效率、可靠性等都需要达到极高的标准。由于 5G 通信全频带通信的特性,5G 手机中射频前端芯片数量将进一步增加,带动以 GaAs 为代表的第二/三代化合物半导体产业链发展。具体到实践当中,可以从设备端和基站端两分析。基站端需求 。5G 实际应用中,带相控阵天线的手机将发射信号给基站和微蜂窝基站,基站和微蜂窝基站将与相控阵天线对接以实现信号连接。基站使用的射频功率管一般采用 LDMOS 工艺,但现在 LDMOS 工艺正在被氮化镓(GaN)工艺取代。GaN 是宽禁带材料,意味着 GaN 能够耐受更高的电压,有更高的功率密度和可工作温度更高,能够满足 5G 通信基站的要求。

  同时,5G 采用高频频谱虽然能提供更高的数据传输速率,但这一频段的电磁波传输距离很短,且容易被障碍物阻挡。因而移动运营商可能需要建设数百万个小型基站,将其部署至每根电线杆、每栋大楼,每户房屋,甚至每个房间,这也就意味着基于 GaN的 PA 芯片需求将出现飞跃增长。根据市场调查机构 Yole 的估计,GaN 功率器件需求有望在今后 5 年内爆发,复合增长率可达 90%以上。

  手机端需求 。4G 手机中数字电路部分包括应用处理器和调制解调器,射频前端则包括功率放大器(PA)、射频信号源和模拟开关。功率放大器通常采用砷化镓(GaAs)材料的异质结型晶体管(HBT)技术制造。未来的 5G 手机也要有应用处理器和调制解调器。不过与 4G 系统不同,5G 手机还需要相控阵天线,每根天线都有独立的 PA 和移相器,并与一个覆盖整个工作频率的信号收发器相连,相应的半导体器件需求将会更大。

  2015 年全球智能手机销量达 14.3 亿部, 中国智能手机出货量达 5.39 亿部。根据估算,2016 年度全球智能手机出货量预计达到 15 部,手机砷化镓功率元件需求量超过 160 亿只,国内手机市场砷化镓元件需求量接近 60 亿只。未来随着 4G 手机渗透率的不断提升和 5G 技术的商用化,手机用砷化镓元件还将不断增长。

2013-2017E年全球镓砷化镓 PA市场规模

  2013-2017E年全球镓砷化镓 PA市场规模

2013-2017E年镓中国砷化镓PA 市场规模

  2013-2017E年镓中国砷化镓PA 市场规模


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 半导体

相关资讯