0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >行业趋势 > 电脑ATX开关电源工作原理和辅助电路故障检修方法与技巧

电脑ATX开关电源工作原理和辅助电路故障检修方法与技巧

2017-06-14
类别:行业趋势
eye 1338
文章创建人 拍明

       ATX开关电源中,+5V SB开关电源是非受控的辅助电源,其工作在高频率、高电压的工作状态下,在正常情况下接通电源时,它输出一路非受控的+5V SB电压和一组为脉宽调制集成控制IC DBL494{12}脚供电电压,使其处于待机状态。

  接通电源,开启电源开关O/I,无电压输出,同时无+5V SB

  拆盖查相关元件无异常,保险管F1完好,测滤波电容C1C2无短路现象,并有充放电过程;数字万用表DT9208测开关管Q2Q1ZD1D8均未发现击穿或变值现象。于是,接通电源测Q2 c极有+300V电压,说明电源整流滤波输出正常。检查未发现损坏的元件,分析很可能是控制回路中某电容(C5C4)失效,更换C5后开机,一切正常。

  接通电源,开启电源开关O/I,无输出。

  拆盖测保险F1已熔断,同时,测量开关管Q2已击穿,用C3150代换Q2(C5027),装上F1(6.3A/250V)后,开机,一切正常。此故障是因Q2固定螺丝间的绝缘管或绝缘片安装不良,导致Q2因外壳与散热片相碰而击穿,并熔断F1,导致无输出,所以在更换Q时应特别注意绝缘可靠。

  故障现象同例2

  拆盖,用万用表测F1已熔断,查Q1Q2均击穿更换Q1Q2后,装上F1开机,故障依旧。经查R10R11开路,用100Ω/0.125W的电阻换上后,开机有输出,但+5VSB过高,说明反馈回路或稳压部分还有故障。快速关机(开机时过长,会再次击穿开关管),经查光耦合器PH1损坏,用PC817更换后,开机一切正常。

  开启电源开关O/I+5VSB过低,其余各路输出正常。  其余各路输出正常,说明电源工作基本正常,但+5V SB接上负载后,下降至24V左右(此时,用示波器测其波形变得很散,甚至看不到波形)。说明电源带负载能力差,故障很可能发生在反馈控制回路,经查Q1性能不良(b-e结阻值变大),用C945更换后,开机带载一切正常。

一、原理分析

1.待机电源

待机电源又称辅助电源,电路见附图。自激振荡部分由Q03,T3,C14,D04,2R21,2R22,2R4等元件组成;稳压部分由IC5(电压基准源),IC1(光祸),Q4(PWM)等元件组成;保护和尖峰吸收部分由Q4,28232R10,C022R5C05A,D06等元件组成。可见待机电源的构成与部分彩电开关电源(带光祸的)基本一致,详细工作过程也大致相同。

T3次级,一路由DOIAC09整流滤波输出十22V,为驱动电路T2初级和IC2 (TIA94CN )⑩脚提供工作电压。一路由DOfC03IA, C05整流滤波输出+5VSB (Stand By),由一根紫色导线经ATX插头送到主板上电源监控部件电路,为该电路提供待机电压。别看待机电源结构简单,在微机系统中却占据着重要地位,一方面它给主控PWM电路和担任多种信号处理的四比较器供电,保障ATX开关电源自行运转;另一方面,它又像永不熄灭的火种,向主机提供待机电压。

2.主开关电源

(1)主控PWM型集成电路TL494CN简介TLA94CN内部由振荡器、死区比较器、PWM比较器、两个误差放大器12、触发器、逻辑门、三极管Q1,Q2,基准电压调节器以及由两个滞回比较(器施密特触发器)组成的欠压封锁电路等部分组成。其中脚、脚外接定时电容和定时电阻;由触发器和逻辑门构成的逻辑电路由脚控制输出方式,在电脑ATX开关电源中(13)脚接5V基准电压,使内部三极管QI,Q2工作在推挽输出方式;基准电压调节器将待机电源经(12)脚提供的22V工作电压转换为5V基准电压,由(14)脚输出。

(2)脉宽调制与驱动电路得到主机启动指令后IC2(TL494CN)立刻由待机状态转人工作状态,脚、脚输出相位差为1800PWM信号,使17初级一侧的Q1,Q2轮流导通或截止,并经T2次级L3 ,LA绕组的藕合,驱动QO1,Q02也为轮流导通或截止,共处于双管推挽工作方式。电路通过D02,D03钳位,吸收反向尖峰电压,保护Q1,Q2不被击穿;C08,D12,D13用以抬高Q1Q2e极电平,保证Q1,Q2b极当有效低电平脉冲出现时可靠截止:由R10,D14,R54,R55C36R51R56R57R58等组成电流取样支路,将QI,Q2工作电流从T2初级绕组抽头引出,经以上元件限流、整流、滤波、分压,完成电流误差,信号的取样,送到IC2⑩脚,即误差放大器2的同相输人端。

电脑ATX开关电源工作原理和辅助电路故障检修方法与技巧.jpg

IC2①脚外围4个电阻,组成电压取样,支路,分别经R15,R16+5V,+12V输出电压进行取样、叠加,再与R33R69(并联)分压,完成电压误差信号的取样,送到IC2①脚,即误差放大器I的同相输人端。以上两个误差信号,经IC2内部误差放大器I2放大、叠加,再经PWM比较器进行脉宽调制,改变QlQ2QOIQ02导通/截止时间比,从而达到自动稳压目的。另外IC2②脚之间C31R43组成误差放大器1的消振、校正电路。

(3)他激式双管推挽半桥功率变换器他激式双管推挽半桥功率变换器,简称半桥变换半桥是因对功率开关变压器的推动只用了1组双管推挽电路而得名。采用半桥变换,有利于转换效率的提高和电源功率的增大,有利于增加稳压宽度和提高负载能力,并且可缩小体积、减轻重量。

QO1导通,Q02截止时,+300V电压和C5放电电流经QO1c,e-T2绕组L5-Tl初级绕组-C9-C6,构成对C6的充电回路,将电能存储在C6;QO1截止,Q02导通时,存储在C6上的电能及十300VC5的充电电流,由C6-C9-T1初级绕组-T2绕组L5-Q02的。,e极叶地,构成对C6的放电回路。从以上这个振荡周期中可以看出:无论QO1导通或Q02导通,流经T1初级绕组工作电流大小相等、方向相反。电路中其他元件功能:1)DlD2功能同D01D02a2)C7C8加速电容,利用充Z放电加速开关管导通或截止。3)D3,D4,R4,R6D5D6,R5R7为加速电容提供充/放电回路,并为开关管b极建立负偏压。4)C10,R8吸收开关管电流换向时所产生的谐振尖峰脉冲。5)C9隔直,隔断流经T1初级绕组电流中的直流成分,防止T1产生偏磁。

3.t5V,t12V,3.3V整流滤波输出电路

(1)由于流经TI初级绕组工作电流是大小相等、方向相反,因此在次级绕组两端所感应的脉冲电压也是大小相等、方向相反,这样就可以方便地利用共阴极二极管或共阳极二极管进行全波整流,用共阴极整流得正极性直流电压,用共阳极整流得负极性直流电压。D21D22,D23外形参看附图,D21D23外形像大功率三极管,内部是共阴极肖特基二极管,D22是用两个分离的快恢复二极管,将阴极焊在一个铁片上构成的共阴极。它们分别是+5V+12V+3.3V的全波整流管。另用D24,D25D27,D28在电路中按共阳极接法,分别担任一5V和一12V全波整流,也采用快恢复二极管。

(2)各路输出采用LC滤波,在这里要注意L2的接法。L25个线圈(其中23并联)担任15V、土12V滤波,为了利用这种正负关系,使L2发挥共模扼流的效应,线圈采取共用磁芯,并将两路负电压进行反接。

(3)IC2内部PWM未对3.3V取样,该电压另设由IC4,Q5,D30,D31等组成的反向电流反馈自动稳压电路。IC4及其外围元件对3.3V电压取样,经Q5放大并转换成电流误差输出。假设输出电压上升,将引起IC4K极电平下降,使Q5电流上升,经D30,D31分别向LO1L02注人反向电流增加,两个线圈的感抗增大,使整流输出电压下降。反之,向这两个线圈反向注人电流减小,则可使整流输出电压上升,从而达到自动稳压目的。

4.过压、欠压和过流自动保护控制电路

本电路主要由IC3⑤脚内部担任保护比较器和IC2④脚内部死区比较器组成。正常情况下,IC3同相输人端脚电平低于反相输入端脚,输出端脚输出低电平,不影响电源工作。一旦脚电平高于脚,则跳变为高电平加到IC2④脚,通过内部‘•死区比较器,中止ATX开关电源工作。当+5V过压时,}Z02fQR17取样会使脚电平升高;当一V,-12V欠压时,经D32,R41R34取样会使脚电平升高;当负载电流加重(如输出端严重短路)时,也会使脚电压升高。以上三路取样信号,只要有一路超限,就会引起自动保护控制电路发生跳变,使ATX开关电源进人死区保护。

5.PS-ON信号处理电路

本电路由IC3内部/比较器担任。PS-ON信号是通过一根绿色细导线经ATX插头、插座,与主板启/闭控制电路进行通讯,当启/闭控制电路的电子开关处于断开状态时,IC2⑩5V基准电压经R36,作为高电平通过绿色导线加到主板启/闭控制电路上,同时5V基准电压又经R37加到IC3"z比较器反相输人端脚,输出端脚输出低电平,经D34保护,比较器同相输人端电平拉低,使其输出端脚输出高电平加到IC2④脚,通过内部死区比较器使脚、脚无PWM信号输出,也即对主开关电源进行封锁。当主板启/闭控制电路的电子开关接地时,PS-ON信号变为低电平,经R37加到/比较器反相输人端脚,脚输出高电平,D34截止,使脚恢复正常时的高电平,脚则输出低电平加到IC2.脚,解除死区封锁,使ATX开关电源得以启动。

6.P.G信号处理电路及断电应急处理电路

(1)P.G信号处理由IC3⑩脚内部P.G比较器担任。P.G(PW-OK)信号是ATX开关电源向主机系统报告可以正常工作的信号,P.G即为PowerGood的缩写。只有微机系统检测到是正常的P.G信号,才能启动ATX开关电源,如果检测不到P.G信号或P.G信号延时不符合要求,系统则禁止对ATX开关电源的启动。IC2⑩脚输出5V基准电压经R62R53R60,R61分压加到IC3⑩脚,同时又经R643109充电(R-It N7常数320ms),再经R63将充电电压加到脚。因同相输人端脚充电电压上升较慢而低于反相端脚电平,使输出端

输出低电平。当脚电平上升并高于脚时,脚跳变为高电平,输出经过延时的5V"P.G"信号。延时要求100-500ms,实际延时与电路选择的RC时间常数有关。

(2)断电应急处理电路由IC3⑨脚内部断电比较器担任。电脑运行过程中难免发生意外断电,如跳闸、电业拉闸、线被刮断、遭雷击等等,为此ATX开关电压设置了断电应急处理电路。意外断电,会使IC2内电流、电压误差取样放大器12输出突然下降,IC2③脚电平突然变底,经R48加到IC3断电比较器同相输人端脚,使其输出端脚输出低电平,经R50,R63脚电平拉低,脚跳变为低电平,以此"P.G信号突然消失的方式,将断电噩耗传送主机,让主机停止正常运行,做好关机处理。

二、ATX开关电源的维修技巧

1.ATX开关电源电路板特点是元件高度密集,而且立体分布,最低的元件只有2mm高,而最高的可达50mm高,中间可把各种元件高低分成4-5层,尤其是两个大散热片的遮挡,使许多元件根本看不到,不要说进行检查和测试,有些大元件虽能看到,但表笔却无法插到它的引脚上。若从背面直接测试焊点,又因为大部分元件连正面位置都无法确定,怎么与背面焊点进行对应?因此,维修时最好是先将两个大散热片拆除,这样电路板上各种元件会透亮一些,维修起来也更方便和安全。

2.待机电源的损坏往往都很严重,而且维修时经常出现反复,但ATX开关电源印刷电路一般都很窄,焊盘也很小,经不起多次焊接,容易脱落,导致故障越修越糟。解决方法是,从有可能需要多次代换元件的焊点上,引出一根短线,先将元件焊在短线上进行试验,以减少对焊点的焊接次数。

3.ATX开关电源保险管一般为4A,5A6A,在额定输出功率条件下有一定的保护作用,但在维修时,因输出功率很小,保险管就起不了保护作用,如果盲目通电,恰电路仍存在隐患,就会出现旧故障尚未排除又添新故障。为防患未然,首次通电应串联1A保险管,如果IA保险管烧断,说明待机电源存在短路,应先修待机电源。如果IA保险管未烧断,将1A保险管换成2A保险管后继续通电,如果2A保险管烧断,说明主开关电源存在短路,则将主开关电源修好。如果2A保险管未烧断,说明整机虽有故障,但不属于短路性故障,排查顺序仍按先待机电源后主开关电源,而且仍用2A保险管做维修过程的意外保护。

4.空载能使+12V0.6V上升,而对于采用反向电流反馈自动稳压的3.3V电压,不但不上升反而下降到1.86V,这种情况容易产生误判,盲目维修,可能没病倒要修出病来。

为避免空载使输出电压发生变化,最好用光驱做负载。接上光驱后各路电压趋向正常,不但有光驱工作指示灯可做电源输出显示,而且还可利用耳机发出的乐曲进行监听。因为光驱功率适中(5V/IA12V/1.5A),既满足维修需要,又不会使开关管、整流管发热,可以放心将它们的大散热片拆除,且又正好适合用2A保险管做意外保护,真可谓一举多得!

三、故障检修

[1]电脑出现无规律频繁启动。

用户反复检查无结果,请求支援。打开机箱左侧盖,在ATX插头上检测各路直流电压,有不稳现象。再打开ATX开关电源,发现470[LF/200VC5C6顶部凸起,说明两个大电解失效,造成输出电压纹波增大,导致电脑频繁启动。注:如果只有一个大电解损坏(漏液),多为与其并联的均压电阻开路,需要一起更换。

与此相关的故障还有待机电源T3次级两个滤波电容C03C09,因紧靠整流二极管,使其失效率增高,出现类似故障应注意对它们的检查。

〔例2]主板红色LED指示灯不亮。

ATX插头+5VSB电压为OV,检查待机电源,发现Q03击穿,2823开路,Q4炸裂,待机电源损坏严重,因而造成无+5VSB电压输出。注意:本文中Q03SSP型场效应管,其他机型有采用三极管的,在路检查应首先看清开关管的类型,以区别它们的极性,否则很容易产生误判。

与此相关的故障还有启动电阻变质(阻值增大)或开路,反峰高压脉冲吸收元件D06,C05A击穿,稳压部分IClIC5损坏等。以上元件的损坏或击穿原因,都是由于待机电源因不受控制而长期工作(大多数用户长年不拔电脑电源插头),饱受高温老化导致损坏率增高,特别是在雨季,还可能遭雷击危害。

〔例3]电脑无法启动。

观察主板红色LED指示灯亮,测+5VSB电压正常,但各路输出电压为OV。打开ATX开关电源,在路检查发现D23击穿。显然是由此引起过流保护,因而造成ATX开关电源无输出。注意:在3.3V输出端有一个1W的低阻值电阻R68,即使D23未击穿,在路测试也呈短路状态,因此检查D23时,应将该电阻断开,以免产生误判。

与此相关故障还有驱动开关管Q1,Q2,半桥变换开关管QO1,Q02,整流输出电路的全波整流管D21D22。在它们之中,只要有1个元件被击穿,都会导致本故障发生。注意,所有整流二极管必须都是快速恢复管(l00kHz),不能用普通整流二极管代换。

「例4]叼故障现象同例30

先在路检查未发现有击穿现象,决定进一步通电检查(需将PS-ON绿色导线接地),测试TO⑤脚电压由正常1.01V变为2.47V,高于1.26V脚输出高电平3.9妙,IC2④脚由低电平0.04V变为高电平3.61V,使ATX开关电源进人死区保护。用一根导线将IC2④脚对地短路,迫使ATX开关电源退出死区保护,结果各路输出电压正常,不存在过压、欠压和过流,极有可能是取样支路有问题。

IC3有三路取样支路,决定先检查由D37,R34,R41D32组成的一5V和一12V欠压保护取样支路,结果很快发现R34开路。由于R34开路,引起取样电压升高,导致ATX开关电源误人死区保护,因而造成各路无输出。

[ 5]ATX开关电源无输出。

测待机电源输出正常,但主电源不工作,查各开关管和整流管未见异常,但IC2⑩脚输出电压仅为1.32V,正常应输出稳定的+5V基准电压,测脚电压由正常值2V左右(待机电压)上升至22V,说明芯片内部有短路,将其换新后故障排除。TL494KA7500引脚功能完全一致,可直接互换。

[6] 开机瞬间测+12V有输出,但很快降至ov

故障时测IC2(14)脚输出电压仅为1.30V,但测脚、(11)脚电压保持2.38V(待机电压)没有改变。这种情况不能轻易确定TL494损坏,需要通过检测各脚对地阻值和检测各脚外围元件进行排查。经过检查未见异常,又检查IC3(C30205)③脚外围元件仍未发现问题,决定取下IC3。在IC3空缺情况下,测IC2(14)脚输出电压恢复正(常为实测4.98V)。用一块LM339N代换C30205后故障排除。事后用LM339N和这块C30205进行对比测试(各脚对(12)),发现其他各脚都一样,只有脚有些差异,C302055.5kf , LM339N6.6kf,仅此IM之差,结果却是天壤之别!

一、滤波电路

1、 电磁干扰

电脑电源是把工频交流整流为直流,再通过开关变为高频交流,其后再整流为稳定直流的一种电源,这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声,噪声在输入端泄漏出去就表现为辐射噪声和传导噪声,在输出端泄漏出去就表现为纹波。辐射噪声频率高于30MHZ,会传播到空间中;传导噪声频率在30MHZ以下,主要干扰音频设备,通过电源线传播到电网中。

外部噪声会进入到电网中的其它电子设备中影响电子设备的运行,而供给负载的电源产生的噪声也会泄漏到电源外部,因此,电脑电源必须有阻止这些噪声进出的功能。

在电脑电源的输入端,需要有由电容和电感构成的滤波器,用于抑制交流电产生的EMI。在电源的输出端,工频电源的整流波形畸变引起的噪声,以及开关工作波形产生的噪声呈现为纹波,因此在输出端也需要接入滤波器,用于抑制直流电产生的EMI

2、 输入端第一道EMI滤波电路

第一道EMI滤波电容是由X电容(白盒子)、线圈型电感和两个Y电容构成的,用来抑制输入端的高频干扰,以及PWM自身产生的高频干扰对电网的污染。

3、第二道EMI滤波电路

为保证输入到整流电路中的电流的纯净,还需要进行第二道滤波。此滤波电路是由X电容、Y电容和变压器型电感组成。

4、高压滤波电路

高压整流滤波电路把220V的交流市电转换为300V的高压直流电压,一路输到开关电路,一路输到辅助电源电路。

高压滤波电容的容量对输出端的稳定性有很大影响,纹波输出的控制也是基于滤波电容的容量。纹波是与输出端呈现的输入频率及开关变换频率同步的分量,一般为输出电压的0.5%以内。

5、低压滤波电路

当高频噪声泄漏到负载侧时,可能使电脑配件产生故障,同时,高频噪声也会向空间辐射。低压端采用的直流线路EMI滤波器。

直流线路EMI滤波器比较复杂。电源的直流有5V12V3.3V电压,对于每路电压,都需要进行滤波。低压端通常有两个大的扼流线圈,其中稍大的对+ 5V+12V进行滤波,稍小的对+3.3V进行滤波。另外,磐石355的低压大容量滤波电容和线圈型电感数目也较多,共有6个,5V12V3.3V 各使用2个滤波电容和1个线圈电感。这样设计可以取得非常好的滤波效果。如下图所示。

二、保护电路

一些电源具有四重保护电路,即过流、过压、过载和短路保护。

1、 输入端过压保护

电源的高压滤波电路边上,有两个蓝色的压敏电阻,其耐压值为270V,当市电电压超过270V时,压敏电阻就会被击穿,从而保护电源其它电路以及电脑配件的安全。

2、 输入端过流保护

第二道EMI滤波电容旁边,会有一根保险丝,当瞬间电流非常大时,保险丝就会熔断,从而保护电源和电脑。

3、 输出端过流保护

过电流会损伤电源和配件。在下图中,有两根细导线连接了控制电路部分和驱动变压器,当控制电路监测到输出端有过大的电流时,通过导线反馈到驱动变压器,驱动变压器就会相应动作,关断电源的输出。

4、 输出端过压保护

输出端输出过高的电压,会对电脑配件造成致命的损害,因此防止输出过压是非常重要的功能,在磐石355的输出端的控制电路中,分布着一些稳压管,当比较器检测到的输出电压与基准电压偏差较大时,稳压管就会对电压进行调整。

5、 输出端过载保护

电源是能量的转换设备,而不是像电池是存储能量的设备,因此其输出不受额定功率的限制,比如额定150W的电源,可以提供200W甚至更高的功率,但此时输出电压将出现很大的波动,跌出正常的5%的范围,并且产生的热量甚至可以烧毁电源,因此不设过载保护的电源是危险的。

过载保护的机理与过流保护一样,也是由控制电路和驱动变压器进行的。

6、 输出端短路保护

输出端短路时,LM339N的比较器会侦测到电流的变化,并通过驱动变压器、PWM关断开关管的输出。

7、 温度控制

电脑电源的转换效率通常在70~80%之间,这就意味着相当一部分能量将转化为热量,热量积聚在电源中不能及时散发,会使电源局部温度过高,从而对电源造成伤害。一些电源设计了温控电路,散热片附近的温度探头会检测电源内部温度,并智能调整风扇转速,对电源内部温度进行控制。

电源不仅要保证输出到电脑配件的功率,还必须保证输出的质量。

ATX电源原理及常见故障检修

电源是计算机的重要组成部件,它是计算机正常工作的基础。当今微机绝大多数配置ATX电源,它是AT电源发展而来,主变换电路和AT电源相似,并增加了一些辅助电路,除给主机提供稳定可靠的工作电源外,还可配合ATX主板实现软件开关主机的功能。ATX电源除经常发生和AT电源共有的故障外,还有一些特有的故障。下面简要介绍ATX电源的常见故障,仅供参考。

1.ATX电源的工作原理

ATX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。整个电路的核心是脉宽调制(PWM)控制芯片,多数ATX电源都采用TL494(或其替代芯片),利用TL494死区控制功能来实现主变换电路的开启和关闭。

2.如何判定故障范围

由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。由于ATX主板上有一部分电路称为电源检测模块,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。那么,怎样判定是ATX电源故障还是主板故障呢?

ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14(绿色线)PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的电源检测部件使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当ATX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。

3.ATX电源常见故障维修(l)300V直流电压。这种故障,首先从交流输入插座查起,保险管、整流二极管()、滤波电容是常坏的元件。找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。大功率管多采用MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,最好选用原型号的管子,还要注意两个管子的参数应一致。

(2)通电后辅助电源正常,启动电源各路主电压无输出。

这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。首先静态检查半桥功率管及其附属电路和驱动电路,若无故障,检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查8 11脚有无脉冲输出,若无则TL494损坏。

(3)300v直流电压,辅助电源不工作。

这是最常见的故障.表现为+300V正常,无+5VSB电压,Tl49412脚无电压,可以判定辅助电源有故障,辅助电源常见电路简图如图3所示。 这是典型的单管自激式开关电源电路,变压器T3次级有两路输出,一路经整流滤波再由7805稳压,输出5VSB电压;另一路整流滤波后,直接加在TL49412脚,作为TL494的工作电源,由于TL494的可工作电压范围较宽(740V),这一路没有稳压措施。TL49414脚输出基准+5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。由于电路简单,没有完善的稳压调控及保护电路,使辅助电源电路成为ATX电源中故障率较高的部分,常损坏的元件是功率管和功率电阻(4.7?),特别是功率管的启动电阻(300k?)。另外,辅助电源出现故障,输出电过高时,也可能造成其供电的电路无件损坏,如TL494等这是出ATX电源的特点决定的。当计算机软关闭后,市电并没有断掉,辅助电源一直在工作,特别在夜间,市电有可能很高,并且辅助电源也较为简易,所以极易损坏辅助电源电路。一般在没有特殊情况时,软关机后若较长时间不用,应切断市电。

(4)各路电压正常,无P.G信号。

ATX电源的P.G(也称PW-OK)信号的形成电路 在电源加电后,辅助电源首先建立VREF(LM393的工格电源也为VREF)TL494脚提供较低电压,三极管A733导通,LM393脚输出低电平。当ATX电源开启主变换电路工作,TL494脚维持较高电平,使二极管A733处于截止状态,VREF通过电(4.7uF)充电,延迟一段时间后,输出+5VP.G信号,主机开始工作。当电源输出电压降低时,检测电路送到TL494的检测电压也随之降低,如果电压降低超过额定范围,TL494脚电平将降为低电平,三极管A733导通,使lM393脚输出低电平,主机停止工作。出现上述故障,一般是LM393集成电路坏,P.G信号恒为低电平,也有可能是三极管A733短路,将P.G信号钳位在低电平。这部分电路由于工作电压较低,阻容元件很少发生故障。将损坏的元件更交换后,即可排除该故障。

ATX电源的维修 电源维修自己做

如果说CPU是电脑的心脏,那么电源就是电脑的能量源泉了。它为CPU、内存、光驱等所有电脑设备提供稳定、连续的电流。如果电源出了问题,就会影响电脑的正常工作,甚至损坏硬件。电脑故障,很大一部分就是由电源引起的。所以,千万别小看这个价格不高的配件,细心呵护吧!本人长期担任电脑维护工作,积累了一些小经验,在这里和大家共享。

一、电源故障判断

1.硬盘出现坏磁道 不好的电源易导致硬盘出现假坏道,这种故障一般可通过软件修复。碰到此类情况,首先确认电源是否有问题,如果电源确实有问题,则应当更换质量可靠、稳定的新电源。

2.电脑运行伴有轰轰的噪声这是出在电源风扇的噪音增大所致,如果电脑长时间没有开启过,电风扇上面灰尘积攒过多,则可能出现这种现象,解决办法是拆开电脑,卸下电源,将风扇从上面拆下,除尘。然后再重新装好,开机后一般噪声会消除。

3.光驱读盘性能不好这种情况一般发生在新购买的计算机或新买的CD-ROM上,读盘时拌有巨大的嗡嗡声,排除光驱的故障之后,很可能是电源有问题。有必要拆开检查一下。

4.超频不稳定CPU超频工作对于电源的稳定性要求很高,如果电源质量比较差,在超频后的电脑,经常会出现突然死机或重新启动的现象。一般只要更换一个新的稳定的电源就可以了。

5.显示屏上有水波纹有可能是电源的电磁辐射外泄,受电源磁场的影响,干扰了显示器的正常显示,如果长期不注意,显示器有可能被磁化。

6.主机经常莫名奇妙地重新启动这有可能是电源的功率不够,电源提供的功率不足以带动电脑所有设备正常工作,导致系统软件运行错误、硬盘、光驱不能读写、内存丢失等,使得机器重新启动。

二、电源的故障原因

1.保险丝熔断。一般情况下,保险丝熔断的主要原因有:直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对较大。具体表现为:回路中二极管被击穿,高压滤波电解电容损坏,逆变功率开关管损坏。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管ec极间的阻值小于100k?,说明开关管损坏。其次测量输入端的电阻值,若小于200k?,说明后端有局部短路现象。

2.无直流电压输出或电压输出不稳定。如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡 电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8?,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

3.电源负载能力差。如果是电源负载能力差,开机后,电源只能向主板、软驱正常供电,当接上硬盘、光驱后,因为负载能力不足,可能导致屏幕变白而不能正常工作。打开电源检查,可能有这些原因:稳压二极管发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。如果晶体管工作点为选择好状态,则可以调换振荡回路中各晶体管,使其提高,或调大晶体管的工作点。

4.无直流输出。如果电源内的保险管烧断,则故障部位可能在变压器。这时,可更换保险管进行加电实验。若接通交流电源后,保险管又烧黑,则证明交流输入电路有短路情况,可在整流桥交流输入端的两头加保险管,并直接接到交流电源上,然后接通电源,如果稳压电源风机旋转正常,而且测试各直流输出电压正常,则说明故障部位在交流滤波电路中。

ATX电源技术详解

目前,ATX电源广泛应用于电脑中,与AT电源相比,它更符合"绿色电脑"的节能标准它对应的主板是ATX主板。

1.ATX电源的特点

AT电源相比,ATX电源增加了“+3.3V+5VSBPS-ON”三个输出。其中“+3.3V”输出主要是供CPU用,而“+5VSB”“PS-ON”输出则体现了ATX电源的特点。 ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSBPS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。

2.ATX电源的核心电路

ATX电源的主变换电路与AT电源相同,也是采用双管半桥它激式电路,PWM(脉宽调制)控制器同样采用TL494控制芯片,但取消了市电开关。 由于取消了市电开关,所以只要接上电源线,在变换电路上就会有+300V直流电压,同时辅助电源也向TL494提供工作电压,为启动电源作好准备。 ATX电源的特点就是利用TL494芯片第4脚的死驱控制功能,当该脚电压为+5V时,TL494的第911脚无输出脉冲,使两个开关管都截止,电源就处于待机状态,无电压输出。而当第4脚为0V时,TL494就有触发脉冲提供给开关管,电源进入正常工作状态。辅助电源的一路输出送TL494,另一路输出经分压电路得到“+5VSB”“PS-ON”两个信号电压,它们都为+5V。其中,“+5VSB”输出连接到ATX主板的电源监控部件,作为它的工作电压,要求“+5VSB”输出能提供10mA的工作电流。电源监控部件的输出与“PS-ON”相连,在其触发按钮开关(非锁定开关)未按下时,“PS-ON”+5V,它连接到电压比较器U1的正相输入端,而U1负相输入端的电压为4.5V左右,这样电压比较器U1的输入为+5V,送到TL494死驱控制脚,使ATX电源处于待机状态。当按下主板的电源监控触发按钮开关(装在主机箱的面板上)“PS-ON”变为低电平,则电压比较器U1的输出就为0V,使ATX主机电源开启。再按一次面板上的触发按钮开关,使“PS-ON”又变为+5V,从而关闭电源。同时也可用程序来控制电源监控部件的输出,使“PS-ON”变为+5V,自动关闭电源。如在WIN9X平台下,发出关机指令,ATX电源就自动关闭。

3.主板无法加电的故障分析

由于ATX电源的开启受制于主板的电源监控部件,所以当ATX主机出现无法加电的故障时,不能立刻确定故障是电源本身还是主板的电源监控部件,给维修带来一定难度。 根据以上分析,我们可在“PS-ON”输出与地之间接一个100 OHM 左右的电阻,使“PS-ON”变为低电平,就能启动ATX电源,这样即可区分故障部位。同时也提示我们,如果ATX主板的电源监控部件出现故障,由于它的维修有较大难度,我们可以跳过电源监控部件,直接控制“PS-ON”的电压,就能开启或关闭主机。当然,此时主机的自动关闭功能没有了。保险丝良好,各路直流电压无输出的检修

ATX开关电源脱机,将电路板从电源盒中拆出,延长电源盒到电路板的电源连线,加电。测两只半桥变换开关管的ce电压,应为+300V的一半,否则开关管损坏。若开关管正常,将PS-ON对地短接而无电压输出,应为保护电路动作或KA7500BLM339及其外围元件损坏。先测KA7500B12脚电压,应在10V~40V。若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅助电源间的供电支路。12脚供电电压正常,测14+5V基准电压,若无或偏差+5V很大,则KA7500B必坏。14+5V电压正常,测4脚,应为低电平。若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。先测KA7500B12脚电压,应在10V~40V。若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅助电源间的供电支路。12脚供电电压正常,测14+5V基准电压,若无或偏差+5V很大,则KA7500B必坏。14+5V电压正常,测4脚,应为低电平。若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。KA7500B正常,4脚仍高电平,有两种情况:一是4脚与14间的电解电容漏电;二是LM339及其外围电路异!正常状态下,待机时,PS-ON为高电平,使LM3396脚电压比较器II的反相端为高电平,略高于7脚电压比较器II的同相端电平,使1脚电压比较器II的输出端为低电平,通过外围电路使4LM339电压比较器I的反相端为低电平,低于电压比较器I的同相端电平,使2脚电压比较器I的输出端为高电平,经外围电路,使KA7500B4脚为高电平,封锁811脚的脉宽调制信号输出。同时,1脚的低电平又通过外围电路,使LM33914脚电压比较器III的输出端为低电平,通过外围电路,使LM33911脚电压比较器IV的同相端为低电平,从13脚电压比较器IV的输出端为低电平,无PW-OK信号送出。启动后,PS-ON为低电平,使LM3396脚为低电平,低于7脚电平,使1脚输出端为高电平。由于外围电路的隔离,电压比较器I不再受1脚控制。通常,电压比较器I的反相端4脚电平,设置的比同相端5脚电平高,而使其2脚输出端呈低电平,经外围电路,使KA7500B4脚为低电平,允许811脚的脉宽调制信号输出。KA7500B1脚电压比较器的同相端取样电平略高于2脚反相端的电平,使其输出端3脚为高电平。经外围电路,使LM3399脚为高电平,电压比较器III比较后,14脚输出高电平。经外围电路,使11脚为高电平,电压比较器IV比较后,13脚输出高电平,向主机送出PW-OK信号。

所以,如果电解电容电容正常,而KA7500B4脚仍为高电平,可按上述LM339的工作流程,对LM339

和外围电路进行检查,就能发现问题所在。

如果ATX的整流滤波输出电路存在短路性故障,通过外围连接电路,会使KA7500B6脚电平拉高,当超过内部误差放大器的固定分压比时,促使调制脉冲变窄,使输出电流减小。同时,LM3395脚电平也被拉高,使2脚电压比较器I的输出端为高电平,经外围电路,使KA7500B4脚为高电平,封锁811脚的脉宽调制信号输出而保护。如果保护电路动作。将PS-ON端对地短接,测PW-OK端为低电平,查LM339及其外围电路;PW-OK端为高电平,可查整流滤波直流输出电路的肖特基快恢复整流二极管是否击穿、滤波电容是否漏电、负载电阻是否短路、功率变换变压器是否存在匝间短路等。

以上分析只是对KA7500BLM339配对使用时,一般情况下的工作流程说明,不针对什么牌子的开关电源,只要是KA7500BLM339配对使用就适用,希望对各位有所帮助。TL494各电压实测值对照表(V)

引脚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

待机时 0 4.5 0 3.3 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5

启动后 4.4 4.3 3 0 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5

说明:有的电路16脚接地。KA7500BTL494的功能、引脚排列都是一样的,完全可以代换。

电脑电源(ATX电源)

基本构成:

上图就是我们日常使用的电脑电源(ATX电源)的结构图。从中我们不难发现,一台按照ATX标准

制造的电源,结构上主要由四大部分组成。分别是:(输入端)滤波,整流/变压,控制,(输出端)

波。

下面我们就用实例为大家介绍。

(输入端)滤波:EMI部分相信关注电源评测的朋友一定不陌生,就是电源输入端的滤波电路,通常被称为一级EMI电路。国外一些产品在此多使用模块式的元件,而国内厂家限于成本则通常采用电容、扼流圈(电感)等单独元件组合制造。其实从功能上以及效果上,前面说过的两种做法达到的效果是一样的。这个部分的电路由差模电容、共模电感、共模电容组成的多级电源滤波器构成,其主要作用就是以低通滤波的方式将高频电磁杂波信号虑除,高频杂信号会在其中振荡而不能通过,同时也能防止电源内部的电磁干扰泄漏出去。线路中两个高压陶瓷电容则分别并联在电源壳体以及火线、零线上,当机壳接地的时候就将杂波信号短路。此外,该电路中还串接了一个负温度系数的限流电阻,可以避免开机瞬间强大的电流损坏后级电路中的元件。之所以称其具有负温度特性,就是由于这种电阻在电流刚通过时阻抗大,随着电流的通过并发热后阻抗降低,电路逐渐恢复正常,因此用来避免发生涌浪的可能。传统的电源认证只是非强制性要求使用一级EMI电路,而目前所奉行的(ChinaCompulsoryCertification,又称3C)认证则要求至少使用两级EMI电路,除电源输入端需要一级外,在整流电路前还需要一级,

也就是我们俗称的二级EMI电路。

通常情况下,电源的二级EMI电路会被安置在电源主板上。而这部分电路的结构同一级EMI电路并没有本质上的差别。只是具体到不同厂家,会有不同的制造思路。但是有一点,如果某款电源中只能见到一套EMI电路或者两级EMI电路中有明显缩水的话,那么它一定是不符合3C规范。(输入端)滤波:全桥整流滤波部分高压端的整流滤波电路。作用是对交流电进行整流滤波而形成高压直流电,为开关电路供电。从结构上看来,这部分相对比较简单。主要就是由二极管和电容组成,四个二极管组成全桥电路对交流电进行整流进而转换为脉冲直流电,经过两个高压电容的滤波而变成比较稳定的直流电。从电源制造的角度看来,这两部分也有其各自的标准。二级管的作用主要是用于整流,将220V的交流市电转化成稳定的直流电流。好的电源产品必须采用和其功率相符的二级管,这主要是因为二极管本身具有一定的耐压和耐流的限制,其最大输出电流太小容易导致电源在大负载下烧毁;电容容量的大小对整流滤波的效果也有很大的影响,其作用就像是水库,将流量不均匀的电能先存储起来,再均匀的提供给变压器使用。大容量的电容能够减少电源输出端的纹波波动,并能在意外断电时提供更长的供电时间。因此,通过电容上的标称值,也可以简单判断一款电源的好坏,比如一款标称300W的电源,其电容容量不得小于680uF。整流/变压作为开关电源最主要的组成部分,高频变压器相对于传统的工频变压器有以下优点:利用铁氧体材料制成的高频变压器具有转换效率高、体积小巧的特点;而传统的工频变压器工作在50Hz下,输出相同功率时需要较大的截面积而导致变压器体积庞大,不利于电源的小型化设计,而且电源转换效率也低于开关电源。电脑使用的开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电。在这个电路中,开关管的最大电流对电源输出功率的大小有一定的限制(通常应用于300W电源的MOS管体积较大,有的电源甚至使用了耐流达到10A的开关管),而高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少,由于工作在很高的频率下,对元件质量的要求和线路的搭配有很高的要求。

电源的核心部件——高频变压器

半桥式变压电路,其中最为显眼的是三只高频变压器,从上到下分别为:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于。而待机变压器,只要电源功率不超过300W其磁芯直径达到16mm就够了。当然,这里还要提到一个概念,就是目前一些厂家宣传的磁放大技术。这种技术相对于传统的高频变压器技术,改进点之一就在于采用了新材料制造变压器磁芯,用以提高变压器效能。不过单从变压器角度,很难用肉眼直观的分辨。前面说到的待机变压器(辅助变压器),其实就是AT电源和ATX电源的主要区别。只有拥有待机电路的电源产品,才可以在电脑主机关闭后,继续为电脑提供+5V的电压(+5VSB供主板启动时使用),因此主板可以实现远程控制或定时启动等诸多功能。而这一点也是PC电源同普通工业电源区别之一。

控制电路

电路的核心部分,对开关管进行控制以调整输出电压的高低。 电源内部的控制中心有了开关管和变压器还不能够完成一个完整的开关电源电路的转换过程,因为开关管的工作需要有控进行。目前电脑电源上主要采用PWM脉冲宽度调制的方式进行工作,具体地说就是采用专用的控制芯片对两个开关管进行控制,每个开关管都以导通或截止两种状态的方式工作,芯片只要控制一个周期内开关管导通和截止的比例就可以改变输出电压的高低。当电源输出电压较低时,端反馈的电压也下降了,控制芯片就增加开关管导通的时间而减少截止的时间,这样就能增加输出端的电压,从而达到一定的平衡,而开关管的总的工作周期则不会变化。控制芯片同时还负责电压过载和电流短路保护,避免因电源损坏时导致与其连接的电脑设备毁坏。

下面,举例说明:

在另一边是PWM电源管理集成电路,上面的是LM339N芯片、下面是KA7500B芯片,我们分别介绍一

下:4路精密电压比较器LM339NLM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。LM339集成块采用C-14型封装。

KA7500B可以完成判断和产生PG信号、PWM控制和保护等诸多功能:该IC具有多种调节和保护功能,功能齐全,工作震荡的频率可在1K300KHz之间调整。KA7500控制2个功率开关管轮流开、闭,并通过高频变压器将能量传送到次级,然后通过高频整流二极管还原成直流低电压。

为将高压与低压端完全隔离,芯片对开关管的驱动是通过一个变压器来进行的,外形与高频变压器类似,只是个头稍小。这个区域中还包括了一个关键的电路——PG信号发生电路。它的作用是在启动时输出电压都稳定后再给电脑一个启动信号,让电脑正式启动,而在意外断电时也能及时地送出关机信号让电脑马上停止工作,对电脑的稳定和外设起了很大的保护作用。

PG信号与其他相关信号的时序关系图中显示了ATX规定中电脑在开启和关闭时PG信号产生的过程和时序要求,由此可见PG信号的重要性,只有电源送出了合乎ATX规定的PG信号,才能对电脑起到真正的保护作用。上篇中,我们介绍了一款符合ATX标准的电源所拥有的主要结构。不过,在开篇时我们已经说过,随着3C的推出,目前市售的电源产品在结构上有了一些变化。另外,随着电脑功耗的不断提升,对电源功率方面也有了很多不同的要求。本篇就立足于此,为大家介绍一下电源中的新组件--PFCPC电源采用传统的桥式整流、电容滤波电路会使AC输入电流产生严重的波形畸变,向电网注入大量的高次谐波,因此网侧的功率因数不高,仅有0.6左右,并对电网和其它电气设备造成严重谐波污染与干扰。早在80年代初,人们已对这类装置产生的高次谐波电流所造成的危害引起了关注。1982年,国际电工委员会制订了IEC55-2限制高次谐波的规范(后来的修订规范是IEC1000-3-2),促使众多的电力电子技术工作者开始了对谐波滤波和功率因数校正(PFC)技术的研究。电子电源产品中引入PFC电路,就可以大大提高对电能的利用效率。

新的国家强制认证制度(CCC认证)200251日起开始实施,自200351日起强制实施(使用CCC证书)以来,PFC作为电源产品的一大卖点逐渐被人们所重视,那么PFC究竟是什么呢?PFC(Power Factor Correction )即功率因素,指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。交换式电源供应器上的功率因素校正器的运作原理是去控制调整交流电电流输入的时间与波型 使其与直流电电压波型尽可能一致,让功率因素趋近于1。这对于电力需求量大到某一个水平的电子设备而言是很重要的 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下 电子设备没有功率因素校正时其PF值约只有0.5。和传统无功率因数校正的电源相比,带有功率因素校正的 电源的好处有:节省电费,增加电力系统容量, 稳定电流。低功率因素即代表低的电力效能,越低的功率因素值代表越高比例的电力在配送网络中耗损,若较低的功率因素没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。

一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块超酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块发烧级的声卡更能带领我们进入那美妙的音乐殿堂,一个强劲而稳定工作的电脑电源,则是我们的计算机能出色工作的必要保证。

计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(12)整流以后成为高电压的脉冲直流电,再经过电容滤波(3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL4944脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,望、闻、问、切

由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1VT2击穿。

然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。

二、加电检测

检修ATX开关电源,应从PS-ONPW-OK+5V SB信号人手。脱机带电检测ATX电源待机状态时,+5V SBPS-ON信号高电平,PW-OK低电平,其他电压无输出。ATX电源由待机状态转为启动受控状态的方法是:用一根导线把ATX插头14PS-ON信号,与任一地端35713151617中的一脚短接,此时PS-ON信号为零电平,PW-OK+5V SB信号为高电平,开关电源风扇旋转,ATX插头+3.3V+5V+12V有输出。

在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL4944脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。

三、常见故障

1.保险丝熔断

一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管ec极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。

2.无直流电压输出或电压输出不稳定

如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

3.电源负载能力差

电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。

4、通电无电压输出,电源内发出吱吱声。

这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,用万用表一量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。

5、没有吱吱声,上一个保险丝就烧一个保险丝。

由于保险丝不断地熔断,搜索范围就缩小了。可能性只有3个:1、整流桥击穿;2、大电解电容击穿;3、初级开关管击穿。电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大电解电容拆下测试后也正常,注意焊回时要注意正负极。最后的可能就只剩开关管了。这个电源的初级只有一个大功率的开关管。拆下一量果然击穿,找同型号开关管换上,问题解决。

其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。

电脑电源的接口

健全的PC电源中都具备9种颜色的导线(目前主流电源都省去了白线),它们的具体功能相信还有不少网友搞不清楚,今天就给大家详细的讲解一下。

黄色:+12V

黄色的线路在电源中应该是数量较多的一种,随着加入了CPUPCI-E显卡供电成分,+12V的作用在电源里举足轻重。

+12V一直以来硬盘、光驱、软驱的主轴电机和寻道电机提供电源,及为ISA插槽提供工作电压和串口设备等电路逻辑信号电平。+12V的电压输出不正常时,常会造成硬盘、光驱、软驱的读盘性能不稳定。当电压偏低时,表现为光驱挑盘严重,硬盘的逻辑坏道增加,经常出现坏道,系统容易死机,无法正常使用。偏高时,光驱的转速过高,容易出现失控现象,较易出现炸盘现象,硬盘表现为失速,飞转。目前,如果+12V供电短缺直接会影响PCI-E显卡性能,并且影响到CPU,直接造成死机。

蓝色:-12V

-12V的电压是为串口提供逻辑判断电平,需要电流不大,一般在1A以下,即使电压偏差过大,也不会造成故障,因为逻辑电平的0电平从-3V-15V,有很宽的范围。

红色:+5V

+5V导线数量与黄色导线相当,+5V电源是提供给CPUPCIAGPISA等集成电路的工作电压,是电脑中主要的工作电源。目前,CPU都使用了+12V+5V的混合供电,对于它的要求已经没有以前那么高。只是在最新的Intel ATX12V 2.2版本加强了+5V的供电能力,加强双核CPU的供电。它的电源质量的好坏,直接关系着计算机的系统稳定性。

白色:-5V

目前市售电源中很少有带白色导线的,白色-5V也是为逻辑电路提供判断电平的,需要电流很小,一般不会影响系统正常工作,基本是可有可无。

橙色:+3.3V

这是ATX电源专门设置的,为内存提供电源。最新的24pin主接口电源中,着重加强了+3.3V供电。该电压要求严格,输出稳定,纹波系数要小,输出电流大,要20安培以上。一些中高档次的主板为了安全都采用大功率场管控制内存的电源供应,不过也会因为内存插反而把这个管子烧毁。使用+2.5V DDR内存和+1.8V DDR2内存的平台,主板上都安装了电压变换电路。

紫色:+5VSB(+5V待机电源)

ATX电源通过PIN9向主板提供+5V 720MA的电源,这个电源为WOL(Wake-up On Lan)和开机电路,USB接口等电路提供电源。如果你不使用网络唤醒等功能时,请将此类功能关闭,跳线去除,可以避免这些设备从+5VSB供电端分取电流。这路输出的供电质量,直接影响到了电脑待机是的功耗,与我们的电费直接挂钩。

绿色:P-ON(电源开关端)

通过电平来控制电源的开启。当该端口的信号电平大于1.8V时,主电源为关;如果信号电平为低于1.8V时,主电源为开。使用万用表测试该脚的输出信号电平,一般为4V左右。因为该脚输出的电压为信号电平。这里介绍一个初步判断电源好坏的土办法:使用金属丝短接绿色端口和任意一条黑色端口,如果电源无反应,表示该电源损坏。现在的电源很多加入了保护电路,短接电源后判断没有额外负载,会自动关闭。因此大家需要仔细观察电源一瞬间的启动。

灰色:P-OK(电源信号线)

一般情况下,灰色线P-OK的输出如果在2V以上,那么这个电源就可以正常使用;如果P-OK的输出在1V以下时,这个电源将不能保证系统的正常工作,必须被更换。这也是判断电源寿命及是否合格的主要手段之一。

认识导线种类作用是DIY玩家的必修课,是菜鸟用户晋级的必经之路,大家掌握了电源导线种类可以更清晰的认识电源的输出规格,方便大家选购电源和排除故障。

电脑电源维修经验

电脑电源是电脑系统中比较重要的部件。它长期工作在高压,高温的环境中,电压的波动,电流冲击、各种电源干扰都有可能造成损坏。所以和其他元器件比较起来是容易损坏的部件。因我局电脑较多,进入夏季以来,天气炎热、电压不稳导致损坏了很多,在维修过程中发现了几点规律,主要有以下几种情况:

其一、故障现象是:正常使用并关机后,再开机时,电脑无法启动。这种情况多为电压波动过大,瞬间电压过高或者过低造成,这种情况可以先试着把电脑与电源线断开,等几秒钟,一般有可能恢复,因为电源本身有保护功能,当电压波动幅度超过电源本身负载能力时,就进入保护状态。这时就需要断开电源,等一会就会好的。但是也不全是这样,有一部分就不能进入保护状态,这样就会损坏,维修过程中发现主要是以电源滤波电容击穿或者快速整流二极管损坏的居多。

其二、故障现象是使用过程中主机突然断电,再重新启动无任何反应。送修后手摸机箱感觉很热,打开机箱发现灰尘较多,电源风扇转动不灵活,分析原因可能是散热不良造成电源内部过热,元件烧毁。经检查电源触发时风扇有反应,然后马上断电,分析是电源后级存在严重短路,经检查是快恢复二极管因过热造成短路,更换后工作正常。

其三、电脑有的时候无法启动,有的时候反复按复位键则可启动,有时正常工作时也突然重新启动。这种故障是与辅助电源电路有关。打开电源盒用万用表测此时+5V SB待机电压,仅为4V左右,断电检查发现辅助电源稳压集成块7805输入端滤波电容容量变小,看来也是长时间通电后受热导致容量下降所致。换上新的电解电容后,故障排除。

经过多台电源维修发现出故障的电源多为使用完毕后,只由操作系统进行了关机而未拔掉电源插头,而那些长时间一直工作着的电脑反而不容易出现故障。原因是虽然电脑已经软件关机,但是电源内部副电源一直工作。虽然只有一部分元件工作发热,但因电源风扇不工作,热量不易散发,所以反而易出故障。所以大家在电脑不用的时候最好把电源插头拔下,确保安全。

计算机稳压电源常见故障处理

检修ATX开关电源,应从PS-ONPW-OK+5V SB信号人手。脱机带电检测ATX电源待机状态时,+5V SBPS-ON信号高电平,PW-OK低电平,其他电压无输出。ATX电源由待机状态转为启动受控状态的方法是:用一根导线把ATX插头14PS-ON信号,与任一地端35713151617中的一脚短接,此时PS-ON信号为零电平,PW-OK+5V SB信号为高电平,开关电源风扇旋转,ATX插头+3.3V+5V+12V有输出。

一、常见故障分析与处理

1.电源无输出

当电源在有负载情况下,测量不出各输出端的直流电压时即认为电源无输出。这时应先打开电源检查保险丝,通过保险丝熔断情况来分析故障范围。

1)保险丝熔断并发黑

说明有严重短路现象,应重点检查整流滤波和功率逆变电路。

(1)交流滤波电容C3C4因交流浪涌电压击穿而短路,有些ATX电源交流滤波电路比较复杂,应检查是否有短路的元件。

(2)交流主回路桥式整流电路中某个二极管击穿。损坏原因:由于直流滤波电容C5C6一般为330μF470μF的大容量电解电容,瞬间充电电流可达20A以上。所以瞬间大容量的浪涌电流易造成整流桥中某个性能略差的整流管烧坏。另外交流浪涌电压也会击穿整流二极管而短路。

(3)整流滤波电路中的直流滤波电容C5C6击穿,甚至发生爆裂现象。损坏原因:由于大容量的电解电容耐压一般为200V左右,而实际工作电压达到150V左右,接近额定值。因此,当输入电压产生波动或某些电解电容质量较差时,就容易发生击穿电容现象。另外当电解电容发生漏电时,就会严重发热而爆裂。

(4)直流变换电路中的功率开关晶体管VT1VT2和换向二极管VD1VD2击穿损坏。损坏原因:由于整流滤波后的输出电压一般高达300V左右,逆变功率开关管的负载又是感性负载,漏感所形成的电压峰值可能接近于600V,而VT1VT2的耐压Vceo只有450V左右。因此当输入电压偏高时,某些耐压偏低的开关管将被击穿。所以可选择耐压更高的功率开关管。

2)保险丝熔断但不发黑

说明不是短路引起保险丝熔断。

(1)通电瞬间烧断保险,多为瞬间的大电流将保险冲断,如开机时直流滤波电容的充电电流。

(2)使用过程中烧断保险,多为负载过大所致。

3)保险丝未熔断

如电源无输出。而保险丝完好,则应检查电源控制线路中是否有开路、短路现象,以及过压、过流保护电路是否动作,辅助电源是否完好等。

(1)交流输入回路的限流电阻THR开路,此时测不到300V直流电压。开关电源采用220V直接整流滤波电路,当接通交流电压时会有较大的浪涌电流(电容充电电流),浪涌电流易造成限流电阻或保险丝熔断。

(2)辅助电源无+5V电压输出。应重点检查辅助电源电路中的相关元件,如辅助电源电路VT15振荡管损坏,VZ16稳压管、VD30VD41二极管击穿短路,限流电阻R72或启动电阻R76断路等。

(3)脉宽调制芯片TL494损坏,电压比较器LM393损坏。另外如IC10VT7短路,会使IC14脚的电压为高电平,而处于待机状态。

(4)直流输出端有短路,此时短路保护会起作用。其现象是开机瞬间电源指示亮,然后马上又熄灭。应仔细检查±5V±12V线路是否有破损或电路板上有击穿的器件。一般最为常见+5V直流回路的肖特基二级管被击穿。

(5)直流输出过压,此时过压保护会起作用。此时应检查+5V+12V自动稳压控制电路是否损坏,使自动稳压控制失效。

2.受控启动后直流电源无输出

(1)T2原边VT3VT4推动管损坏,R54电阻阻值变大;

(2)半桥功率变换电路开关管VT1VT2至少有一个开路;

(3)防偏磁电容C8容量变小或开路。

3.电源有输出,但开机不自检

这主要是因为电源的PW-OK信号延迟时间不够或无输出造成的。开机后,用电压表测量PW-OK的输出端(电源插头的8)有无+5V。此时应检查比较器LM393是否损坏。如因延时不够,则应检查延时电路中的电阻R104和电容C60

4.电源负载能力差

电源负载能力差主要表现为:电源在轻负载情况下,如只向系统板、软驱供电时,能正常工作,而在配上大硬盘、扩充其他设备时,往往电源工作就不正常。这种情况一般是功率变换电路的开关管VT1VT2性能不好,滤波电容器C5C6容量不足。更换滤波电容时应注意2个电容的容量和耐压值必须一致。

5.电源输出电压不准

如果只有一档电压偏离额定值,而其他各档电压均正常,则是该档电压的集成稳压电路或整流二极管损坏。如全部偏离额定值,则是由IC112脚误差放大器,R39C32误差放大器负反馈回路,取样电阻R33R34R35、构成+5V+12V自动稳压控制电路有故障。

在更换电源电路中的二级管时要注意,因为逆变器工作频率较高,一般大于20kHz,另外负载电流也较大,故电源中+5V档采用肖特基高频整流二极管SBD,其余各档也采用恢复特性的高频整流二极管FRD。所以在更换时要尽可能找到相同类型的整流二极管,以免再次损坏。

6.风扇不转或发生响声

计算机电源的风扇通常采用接在+12V直流输出端的直流风扇。如果电源输入输出一切正常,而风扇不转,多为风扇电机损坏。如果发出响声,其原因之一是由于机器长期的运转或运输过程中的激烈振动引起风扇的4个固定螺钉松动;其二是风扇内部灰尘太多或含油轴承缺油,只要及时清理或加入适量的高级润滑油,故障就可排除。

电源故障维修常识

一、故障类型:电源无输出

此类为最常见故障,主要表现为电源不工作。在主机确认电源线已连接好(有些有交流开关的电源要打到开状态)的情况下,开机无反应,显示器无显示(显示器指示灯闪烁)。无输出故障又分为以下几种:

① +5VSB无输出

前面已讲到+5VSB在主机电源一接交流电即应有正常5V输出,并为主板启动电路供电。因此,+5VSB无输出,主板启动电路无法动作,将无法开机。

此故障制定方法为:将电源从主机中拆下,接好主机电源交流输入线,用万用表测量电源输出到主板的20芯插头中的紫色线(+5VSB)的电压,如无输出电压则说明+5VSB线路已损坏,需更换电源。对有些带有待机指示灯的主板,无万用表时,也可以用指示灯是否亮来判断+5VSB是否有输出。此种故障显示电源内部有器件损坏,保险很可能已熔断。

② +5VSB有输出,但主电源无输出

此种情况待机指示灯亮,但按下开机键后无反应,电源风扇不动。此现象显示保险丝未熔断,但主电源不工作。故障判定方法为:将电源从主机中拆下,将20芯中绿线(PS ON/OFF)对地短路或接一小电阻对地使其电压在0.8V以下,此时,电源仍无输出且风扇无转动迹象(注:有极少数电源在空载时不工作,此种情况除外),则说明主电源已损坏,需更换电源。

③ +5VSB有输出,但主电源保护

此类情况也比较多,由于制造工艺或器件早期失效均会造成此现象。此现象和的区别在于开机时风扇会抖动一下,即电源已有输出,但由于故障或外界因素而发生保护。为排除因电源负载(主板等)损坏短路或其它因素,可将电源从主机中拆下,将20芯中绿线对地短路,如电源输出正常,则可能为:

I. 电源负载损坏导致电源保护,更换损坏的电源负载;

II. 电源内部异常导致保护,需更换电源;

III. 电源和负载配合,兼容性不好,导致在某种特定负载下保护,此种情况需做进一步分析。

电源正常,但主板未给出开机信号

此种情况下也表现为电源无输出,可通过万用表测量20芯中绿色线对地电压是否在主机开机后下降到0.8V以下,若未下降或未在0.8V以下,可能导致电源无法开机。

故障类型:

电源有输出,但主机不显示。这种情况比较复杂,判定起来也比较困难,但可以从以下几个方面考虑:

1) 电源的各路输出中有一路或多路输出电压不正常,可用万用表测试;

2) P.G信号,即测量20芯线中灰色线是否为高电平,如果为低电平,主机将一直处于复位状态,无法启动。

3) 电源输出上升沿或时序异常,或和主板兼容性不好,也可导致主机不显示,但此种情况较复杂,需借助存储示波器才可分析。

电脑电源故障的判断与维修http://www.dnwx.com 来源: 作者: 时间:2008-03-12

电源负责电脑的能量供给,为CPU、内存、光驱等设备提供稳定的供电。如果电源出现问题,就会影响电脑的正常工作,甚至损坏硬件。电脑故障大部分由电源引起。笔者在电脑维护工作中积累了一些小经验,现介绍给各位读者,供参考。

一、电源故障

1.硬盘出现坏磁道。电源异常时极易导致硬盘出现坏磁道,硬盘一般可通过软件修复,而电源确有问题应当更换质量可靠、稳定的同型号电源。

2.电脑运行伴有轰轰的噪声。这是由电源风扇的噪音增大所致,如果电脑长时间未使用,风扇上灰尘积攒过多,则可能出现这种现象。解决办法是拆开电脑,卸下电源,将风扇从上面拆下,仔细除尘。然后再重新装好,开机后噪声即可消除。

3、光驱读盘性能不良。这种情况一般发生在新购买的电脑或CD-ROM上,读盘时伴有较大的嗡嗡声,排除光驱故障之后,很可能是电源有问题,必要时应拆开检查。

4、超频不稳定。CPU超频工作对于电源的稳定性要求很高,如果电源质量较差,在超频工作时会经常突然死机或重新启动。一般只要更换一只性能稳定的电源即可。

5、显示屏上有纹波干扰。可能是电源的电磁辐射外泄,干扰了显示器的正常显示,如果长期不处理,显示器很可能被磁化。

6、主机经常二次启动。呆能是电源功率不足,不足经带动电脑所有设备正常工作,导致系统软件运行错误、内存丢失以及硬盘、光驱不能读写等,使机器在重新启动。

二、电源故障的原因

1、保险丝熔断。一般情况下,保险丝熔断的主要原因有:整流滤波和开关电路元件异常,市电不稳等。如整流二极管击穿、滤波电容损坏、开关管损坏等。检查时应先查看电路板上各元件是否有烧糊、电解液溢出等。

2、无直流电压输出或输出电压不稳定。如果保险丝完好,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂进拆除,如硬盘、光驱等,仅留下主板、电源、蜂鸣器,然后再测量各输出端电压,如果这时输出仍为0V,则电源的控制电路有故障,应仔细查找。

3、电源负载能力差。如果是电源负载能力差,开机后只能向主板、软驱正常供电,当接上硬盘、光驱后,负载能力不足,导致屏幕变白而不能正常工作。可能的原因有稳压二极管、整流二极管、滤波电容等损坏以及晶体管工作点不正常等。如果晶体管工作点下正常,可更换振荡回路中各晶体管,或重新调整晶体管的工作点一试。

4、屡烧保险管。如果电源保险管屡屡烧断,则故障部位在变压器初级绕组前电路的可能性最大。这时可更换保险管加电试验。若接通市电保险管立即烧断,则证明交流输入电路有短路现象,可在整流桥堆源风扇旋转正常,而且测试各直流输出电压正常,则说明故障在噪声滤波电路中.

脑电源的保养与维修

一般来说,计算机在正常工作时发出的声音很小,除了硬盘读写数据发出的声音外,主要是散热风扇发出的声音,其中尤以开关电源风扇发出的声音最大。有的开关电源长期使用后,在工作时会产生一些噪声,主要是由于电源风扇转动不畅造成的。引起电源风扇转动不畅发出噪声的原因很多,主要集中在以下几个方面:

--风扇电机轴承接套产生轴向偏差,造成风扇风叶被卡住或擦边,发出突突的声音。

--风扇电机轴承松动,使得叶片在旋转时发出嗡嗡的声音。

--风扇电机轴向窜动,由于垫片的磨损,轴向空隙增大,加电后发出突突的声音。

--风扇电机轴承中使用了劣质润滑油,在环境温度较低时容易跟进入风扇轴承的灰尘凝结在一起,增加了电机转动的阻力,使电机发出嗡嗡的声音。

如果风扇工作不正常,时间长了就有可能烧毁电机,造成整个开关电源的损坏。针对以上电源风扇发出声音的原因,平时需要进行如下维护保养工作。

电源盒是最容易集结灰尘的地方,如果电源风扇发出的声音较大,一般每隔半年把风扇拆下来,清洗一下积尘和加点润滑油,进行简单维护。由于电源风扇是封在电源盒内,拆卸不太方便,所以一定要注意操作方法。

(1)拆风扇 先断开主机电源,拔下电源背后的输入、输出线插头。然后再拔下与电源连接的所有配件的插头和连线,卸下电源盒的固定螺丝,取出电源盒。观察电源盒外观结构,合理准确地卸下螺丝,取下外罩。取外罩时要把电线同时从缺口处撬出来。卸下固定风扇的四个螺丝,取出风扇,可以暂不焊下两根电源线。

(2)清洗积尘 用纸板隔离好电源电路板与风扇后,可用小毛刷或湿布擦拭积尘,擦拭干净即可。也可以使用皮老虎吹风扇风叶和轴承中的积尘。

(3)加润滑油 撕开不干胶标签,用尖嘴钳挑出橡胶密封片。找到电机轴承,一边加润滑油,一边用手拨动风扇时,使润滑油沿着轴承均匀流入,一般加几滴即可。要注意滚珠轴承的风扇是否有两个轴承,别忽略了给进风面的轴承上油,上油不要只上在主轴上。

润滑油一定要使用计算机专用润滑油或高级轻质缝纫机油,千万不可用一般汽车上使用的润滑油。最后装上橡胶密封片,贴上标签。

(4)加垫片 如果风扇发出的是较大的突突噪声,一般光清洗积尘和加润滑油是不能解决问题的,这时拆开风扇后会发现扇叶在轴向滑动距离较大。取出橡胶密封片后,用尖嘴钳分开轴上的卡环,下面是垫片,此时可取出风扇转子(与扇叶连成一行),以原垫片为标准,用厚度适中的薄塑料片制成一个垫片。把制作好的垫片放入原有的垫片之间,注意垫片不要太厚,轴向要保持一定的距离。用手拨动叶片,风扇转动顺畅就可以了。最后装上卡环、橡胶密封片,贴上标签。记住主轴上的垫片、橡胶密封片、弹簧等小零件,以免散落后不知如何复位。

总之,电源是计算机工作的动力,如果电源风扇出了故障,引发的后果是严重的,因此要定期地对电源进行维护和保养。

另据数据表明,由电源造成的故障约占计算机整机各类部件总故障数的20%~30%。而对主机各个部分的故障检测和维修,也必须建立在电源供应正常的基础上。下面我们对电源的常见故障做一些讨论。 微机电源一般容易出的故障有以下几种:保险丝熔断、电源无输中或输出电压不稳定、电源有输出但开机无显示、电源负载能力差。下面分别介绍其检修方法:

1.保险丝熔断故障分析与排除

出现此类故障时,先打开电源外壳,检查电源上的保险丝是否熔断,据此可以初步确定逆变电路是否发生了故障。若是,则不外如下三种情况造成:输入回路中某个桥式整流二极管被击穿;高压滤波电解电容C5C6被击穿·;逆变功率开关管QlQ2损坏。 其主要原因是因为直流滤波及变换振荡电路长时间工作在高压(300V)、大电流状态,特别是由于交流电压变化较大、输出负载较重时,易出现保险丝熔断的故障。直流滤波电路由四只整流二极管、两只100kΩ左右限流电阻和两只330uF左右的电解电容组成;变换振荡电路则主要由装在同一散热片上的两只型号相同的大功率开关管组成。

交流保险丝熔断后,关机拔掉电源插头,首先仔细观察电路板上各高压元件的外表是否有被击穿烧糊或电解液溢出的痕迹。若无异常,用万用表测量输入端的值:若小于2OOkΩ,说明后端有局部短路现象,再分别测量两个大功率开关管ec极间的阻值;若小于100kΩ,则说明开关管已损坏,测量四只整流二极管正、反向电阻和两个限流电阻的阻值,用万用表测量其充放电情况以判定是否正常。另外在更换开关管时,如果无法找到同型号产品而选择代用品时,应注意集电极-发射极反向击穿电压Vceo、集电极最大允许耗散功率Pcm、集电极-基极反向击穿电压Vcbo的参数应大于或等于原晶体管的参数。再一个要注意的是:切不可在查出某元件损坏时,更换后便直接开机,这样很可能由于其它高压元件仍有故障,又将更换的元件损坏。一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断故障。

2.无直流电压输出或电压输出不稳定

若保险丝完好,在有负载情况下,各级直流电压无输出,其可能原因有:电源中出现开路、短路现象;过压、过流保护电路出现故障;振荡电路没有工作;电源负载过重;高频整流滤电路中整流二极管被击穿;滤波电容漏电等。

处理方法为;用万用表测量系统板十5V电源的对地电阻,若大于0.8Ω,则说明系统板无短路现象。将微机配置改为最小化,即机器中只留主板、电源、蜂鸣器,测量各输出端的直流电压,若仍无输出,说明故障出在微机电源的控制电路中。控制电路主要由集成开关电源控制器(TL-496GS3424)和过压保护电路组成,控制电路工作是否正常直接关系到直流电压有无输出。过压保护电路主要由小功率三极管或可控硅及相关元件组成,可用万用表测量该三极管是否被击穿(若是可控硅则需焊下测量),相关电阻及电容是否损坏。

3.电源有输出,但开机无显示

出现此故障的可能原因是“POWER GOOD”输入的Reset信号延迟时间不够,或“POWER GOOD”无输出。 开机后,用电压表测量“POWER GOOD”的输出端(接主机电源插头的1),如果无+5V输出,再检查延时元器件;若有+5V输出,则更换延时电路的延时电容即可。

4.电源负载能力差

电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变自而不能正常工作。其可能原因有:晶体管工作点未选择好,高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管损坏等。

调换振荡回路中各晶体管,使其增益提高,或调大晶体管的工作点。用万用表检测出有问题的部件后,更换可控硅、稳压二极管、高压滤波电容或整流二极管即可。

ATX电源维修实例

天因为我反复开机几次,后来按电源键居然没有反应了经过我的检查原来是电源不工作了,所有的脚上都没有电压

起初我还以为是频繁启动造成保险丝烧断,可我拆开电源看,保险居然是好的用万用表测量,的确电路已接通了电源再测量整流桥后的直流电压,150V正常保险没有烧就说明整流桥、大电容和开关管都是好的看来故障不在初级,可是次级上也没有短路现象如果有短路现象则保护电路会切断电源并发出吱吱声这时我侧耳倾听并未听到任何声音,这说明次级也没有毛病可问题出在哪呢?

找来ATX电源工作图资料图上画的开始部分就是整流桥,接着引出两条线个接到开关管,另个接到辅助电路我看到这里恍然大悟,是不是辅助电源有毛病了?要知道ATX电源和AT电源最大的区别就在于提供了个辅助电源来控制整个电源的开关和电脑软件开关机和休眠时的供电再回到电路板上,的确ATX电源的初级比AT电源的初级上多了个管子,是不是就是它有问题呢?于是将它焊下测量,可并无击穿现象再检查周围的电路,终于发现有个电阻两端的阻值无穷大,肯定是它被击穿了马上去电子商店配,可店主笑着对我说这是个保险电阻1/80.47欧,是个稀罕物,该店没有卖回家想了想,既然是保险电阻,在周围的元件完好无损的情况下可以用根导线来代替于是逐个检查周围的元件,确认无损坏后,于是用根导线代替该电阻,焊在电路上(见图)焊好后通电,测量主板接口上的电压,PS-ON上有5V电压了用导线将它和黑色的地线相连,风扇开始转了测量其他几组电压也都在规定范围内开机用了14个小时,没问题

这样这个ATX电源就被我这个半桶水修好了我心里很高兴,特意写出来,希望能对大家有点帮助.

注意:对电源不太熟悉的朋友,建议请专业人士协助维修。

开关电源维修一例

故障现象:手提电脑电源适配器没有电压输出,初步判断电源适配器电路有问题

维修过程:拆开外壳检查,发现保险丝烧黑了,说明电源电路存在短路现象用万用表测量场效应开关管的漏极对地电阻,阻值接近于零,拆下场效应开关管Q2测量,发现其漏-源极已烧通短路我们在检修开关电源电路时,当检查出开关管已损坏,不能认为更换开关管后故障就已排除,因为有可能是开关管驱动电路故障引起开关管损坏如果由于驱动的原因引起故障,那么在更换开关管后通电试机时,有可能再次烧毁开关管,造成维修成本升高因此,还要进步检查驱动电路是否工作正常该电路采用的是他激式驱动电路,使用了块TDA4605-3集成电路来实现脉冲宽度调制控制功能由于手上没有资料.

因此根据印刷电路描出电路图,如图分析该电路图,判断IC1的电源输入脚是第6脚,通电后测量6脚电压约十几伏,说明高压整流滤波电路正常,由Q1和集成电路构成的启动电源电路正常用示波器测量第5脚驱动脉冲输出脚,没有波形输出,断定集成电路已损坏跑了几家电子元件店,才买到块TDA4605,没买到2SK1081场效应管,只好购买了只功率更大的2SK1082代替,再购买只3.15A的延时保险丝更换元件后通电试验,发现还是没有18V电压输出,也没有出现再烧毁元件的现象,说明短路故障已排除,但还是没有驱动脉冲加到场效应管的栅极进步分析电路,高压整流输出的300V直流通过R5C5R4R6RT1加到集成块的第23脚,估计分别是场效应管过热取样和市电欠压取样电压用万用表测量3脚有取样电压,2脚没有取样电压,拆下R5测量阻值为无穷大,已断路换上只1W270K电阻后再通电试验,电源有输出电压,但秒钟后降为零检查电路没有发现其他故障,再通电试验仍然只有秒钟的电压输出电源电路有秒钟的输出电压,说明功率变换电路已经开始工作了,但不能维持下去从电路图可知道IC1在通电初期由高压整流得到的300V通过Q1供给启动电源,变换电路工作后应改由D4T1绕组的感应脉冲整流得到直流供给工作电源,现在IC1不能持续输出驱动脉冲,可能是在启动初期IC1输出的脉冲宽度过窄,D4整流后的电压过低,不能维持控制电路和变换电路的工作根据正常使用情况下应该只有个故障点的规律,对原有故障再进行分析,判断最初的故障原因应是R5,在R5损坏的瞬间,使IC1产生异常的驱动脉冲,导致场效应管烧毁,因此原来的TDA4605-3应该是好的,后来购买的IC型号为TDA4605,少了后面的“-3”,参数可能有差异,导致整个电路不能维持工作把原来的TDA4605-3换回去后,电源适配器工作正常. ??

经验教训:在维修过程中,由于不够细心走了些弯路首先在检查出IC1没有输出脉冲时,没有对集成电路的外围电路进步进行检查,马上断定是集成电路损坏;其次在购买元件时,没有考虑到元件型号后缀编号不同可能存在的差异,因此使维修成本上升、故障现象增加、维修过程延长

电源维修经验谈

如果说CPU是电脑的心脏,那么电源就是电脑的能量源泉了。它为CPU、内存、光驱等所有电脑设备提供稳定、连续的电流。如果电源出了问题,就会影响电脑的正常工作,甚至损坏硬件。电脑故障,很大一部分就是由电源引起的。所以,千万别小看这个价格不高的配件,细心呵护吧!本人长期担任电脑维护工作,积累了一些小经验,在这里和大家共享。

一、电源故障判断

1.硬盘出现坏磁道 不好的电源易导致硬盘出现假坏道,这种故障一般可通过软件修复。碰到此类情况,首先确认电源是否有问题,如果电源确实有问题,则应当更换质量可靠、稳定的新电源。

2.电脑运行伴有轰轰的噪声这是出在电源风扇的噪音增大所致,如果电脑长时间没有开启过,电风扇上面灰尘积攒过多,则可能出现这种现象,解决办法是拆开电脑,卸下电源,将风扇从上面拆下,除尘。然后再重新装好,开机后一般噪声会消除。

3.光驱读盘性能不好这种情况一般发生在新购买的计算机或新买的CD-ROM上,读盘时拌有巨大的嗡嗡声,排除光驱的故障之后,很可能是电源有问题。有必要拆开检查一下。

4.超频不稳定CPU超频工作对于电源的稳定性要求很高,如果电源质量比较差,在超频后的电脑,经常会出现突然死机或重新启动的现象。一般只要更换一个新的稳定的电源就可以了。

5.显示屏上有水波纹有可能是电源的电磁辐射外泄,受电源磁场的影响,干扰了显示器的正常显示,如果长期不注意,显示器有可能被磁化。

6.主机经常莫名奇妙地重新启动这有可能是电源的功率不够,电源提供的功率不足以带动电脑所有设备正常工作,导致系统软件运行错误、硬盘、光驱不能读写、内存丢失等,使得机器重新启动。

二、电源的故障原因

1.保险丝熔断一般情况下,保险丝熔断的主要原因有:直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对较大。具体表现为:回路中二极管被击穿,高压滤波电解电容损坏,逆变功率开关管损坏。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管ec极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。

2.无直流电压输出或电压输出不稳定如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

3.电源负载能力差如果是电源负载能力差,开机后,电源只能向主板、软驱正常供电,当接上硬盘、光驱后,因为负载能力不足,可能导致屏幕变白而不能正常工作。打开电源检查,可能有这些原因:稳压二极管发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。如果晶体管工作点为选择好状态,则可以调换振荡回路中各晶体管,使其增益提高,或调大晶体管的工作点。

4.无直流输出如果电源内的保险管烧断,则故障部位可能在变压器初级绕组前。这时,可更换保险管进行加电实验。若接通交流电源后,保险管又烧黑,则证明交流输入电路有短路情况,可在整流桥交流输入端的两头加保险管,并直接接到交流电源上,然后接通电源,如果稳压电源风机旋转正常,而且测试各直流输出电压正常,则说明故障部位在交流滤波电路中。

微机电源的维护与维修

微机的故障经常出在电源上,由电源造成的故障约占整机各类部件总故障数的20%30%。而对主机各个部分的故障检测和维修,也必须建立在电源供应正常的基础上。下面我们对电源的常见故障做一些讨论。

微机电源一般容易出的故障有以下几种:保险丝熔断、电源无输出或输出电压不稳定、电源有输出但开机无显示、电源负载能力差。下面分别介绍其检修方法:

1.保险丝熔断

故障分析与排除:出现此类故障时,先打开电源外壳,检查电源上的保险丝是否熔断,据此可以初步确定逆变电路是否发生了故障。若是,则不外如下三种情况造成:

·输入回路中某个桥式整流二极管被击穿

·高压滤波电解电容C5C6被击穿

·逆变功率开关管Q1Q2损坏

其主要原因是因为直流滤波及变换振荡电路长时间工作在高压(+300V)、大电流状态,特别是由于交流电压变化较大、输出负载较重时,易出现保险丝熔断的故障。直流滤波电路由四只整流二极管、两只100KΩ左右限流电阻和两只330μF左右的电解电容组成;变换振荡电路则主要由装在同一散热片上的两只型号相同的大功率开关管组成。

交流保险丝熔断后,关机拔掉电源插头,首先仔细观察电路板上各高压元件的外表是否有被击穿烧糊或电解液溢出的痕迹,若无异常,用万用表测量输入端的值,若小于200KΩ,说明后端有局部短路现象,再分别测量两个大功率开关管ec极间的阻值,若小于100KΩ,则说明开关管已损坏,测量四只整流二级管正、反向电阻和两个限流电阻的阻值,用万用表测量其充放电情况以判定是否正常。另外在更换开关管时,如果无法找到同型号产品而选择代用品时,应注意集电极-发射极反向击穿电压Vceo、集电极最大允许耗散功率Pcm、集电极-基极反向击穿电压Vcbo的参数应大于或等于原晶体管的参数。再一个要注意的是:切不可在查出某元件损坏时,更换后便直接开机,这样很可能由于其它高压元件仍有故障又将更换的元件损坏。一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断故障。

2.无直流电压输出或电压输出不稳定

故障分析与排除:若保险丝完好,在有负载情况下,各级直流电压无输出,其可能原因有:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤电路中整流二极管被击穿,滤波电容漏电等。处理方法为:

·用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明系统板无短路现象;

·将微机配置改为最小化,即机器中只留主板、电源、蜂鸣器,测量各输出端的直流电压,若仍无输出,说明故障出在微机电源的控制电路中。控制电路主要由集成开关电源控制器(TL-496GS3424)和过压保护电路组成,控制电路工作是否正常直接关系到直流电压有无输出。过压保护电路主要由小功率三极管或可控硅及相关元件组成,可用万用表测量该三极管是否被击穿(若是可控硅则需焊下测量)、相关电阻及电容是否损坏。

·用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏。

3.电源有输出,但开机无显示

故障分析与排除:出现此故障的可能原因是“POWER GOOD”输入的Reset信号延迟时间不够,或“POWER GOOD”无输出。

开机后,用电压表测量“POWER GOOD”的输出端(接主机电源插头的1),如果无+5V输出,再检查延时元器件,若有+5V输出,则更换延时电路的延时电容即可。

4.电源负载能力差

故障分析与排除:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。其可能原因有:晶体管工作点未选择好,高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二级管损坏等。

调换振荡回路中各晶体管,使其增益提高,或调大晶体管的工作点。用万用表检测出有问题的部件后,更换可控硅、稳压二极管、高压滤波电容或整流二极管即可。

 


责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

相关资讯