0 卖盘信息
BOM询价
您现在的位置: 首页 > 电子资讯 >业界动态 > 几种主流驱动电路的分析

几种主流驱动电路的分析

2017-04-13
类别:业界动态
eye 348
文章创建人 拍明

       驱动电路(Drive Circuit),位于主电路和控制电路之间,用来对控制电路的信号进行放大的中间电路(即放大控制电路的信号使其能够驱动功率晶体管),称为驱动电路。

驱动电路的基本任务,就是将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号。对半控型器件只需提供开通控制信号,对全控型器件则既要提供开通控制信号,又要提供关断控制信号,以保证器件按要求可靠导通或关断。

隔离措施编辑驱动电路为什么要采取隔离措施安规问题,驱动电路副边与主电路有耦合关系,而驱动原边是与控制电路连在一起, 主电路是一次电路,控制电路是ELV电路, 一次电路和ELV电路之间要做加强绝缘,实现绝缘要求一般就采取变压器光耦等隔离措施。

几种主流驱动电路的分析.jpg

在正常工作条件下,在电路的任意两个导体之间或任一导体与地之间电压的交流峰值不超过42.4V或直流值不超过60V的二次电路;使用基本绝缘与危险电压隔离,但它既不符合SELV电路的全部要求,也不符合限流电路的全部要求。

ELV电路:在正常工作条件下,电路中任意两点间的电压为安全电压的二次电路为ELV电路。

SELV电路:在正常工作条件下和单一故障条件下,电路中任意两点间的电压为安全电压的二次电路为SELV电路。

ELV+OVP不一定等于SELV

ELV与危险电压电路之间的隔离是使用基本绝缘。

SELV与危险电压电路之间的隔离是使用加强绝缘或双倍绝缘。家用电器安全防护分为两大类:一类是按防触电保护方式分;另一类是按防水程度分。为阐 明家用电器5种防触电保护方式,先介绍几个基本概念: 1 基本绝缘 施加于带电部件对电击提供人基本防护的绝缘。是指在电器中的带电部件上 ,用绝缘物将带电部件封闭起来,对 防触电起基本保护作用的绝缘,如套有绝缘材料的铜、铝等金属导线。从结构上,这种绝缘都置于带电部件上,直接与带电部件接触。

2 附加绝缘 在基本绝缘万一损坏时,为对电击提供保护而另外施加于基本绝缘的独立绝 缘。如电热毯电热丝外包覆的塑料套管。

3 双重绝缘 由基本绝缘和附加绝缘构成的绝缘系统。同时具有基本绝缘和附加绝缘起防 触电保护作用的绝缘,一旦基本绝缘失效时,由附加绝缘起保护作用。如电视机电源线就采用双重绝缘。

4 加强绝缘 在GB 4706 1规定的条件下,提供与双重绝缘等效的防电击等级,而施加于 带 电部件的单一绝缘。它提供的防触电保护程度相当于双重绝缘,但它是一种单独的绝缘结构,可以由几个不能像基本绝缘或附加绝缘那样单独试验的绝缘层组成。

触电保护编辑

下面介绍五种防触电保护方式:

1. O类电器 依靠基本绝缘防止触电的电器。它没有接地保护,在容易接近的导电部分和设 备固定布线中的保护导体之间,没有连接措施。在基本绝缘损坏的情况下,便依赖于周围环境进行保护的设备。一般这种设备使用在工作环境良好的场合。近年来对家用电器的安全要 求日益严格,O类电器已日渐减少,老式单速拉线开关控制的吊扇是O类电器。

2. OⅠ类电器 至少整体具有基本绝缘和带有一个接地端子的电器,电源软线中没有接地导 线、插头上也没有接地保护插脚,不能插入带有接地端的电源插座。老式国产波动式电动洗衣机大多是OⅠ类电器。只备有接地端子,而没有将接地线接到接地端子上,使用时由用户 用接地线将机壳直接接地。

3. Ⅰ类电器 除依靠基本绝缘进行防触电保护外,还包括一项附加安全措施,方法是将易 触及导电部件和已安装在固定线路中的保护接地导线连接起来,使容易触及的导电部分在基本绝缘失效时,也不会成为带电体。例如,国产冰箱都是类电器连接地线。(所谓类电器,通俗地说就是基本绝缘遭受破坏时,可能与人体接触的金属部份均有接地保护措施,其使用的电源线为带接线保护的电源线).

4. Ⅱ类电器 不仅仅依赖基本绝缘,而且还具有附加的安全预防措施。一般是采用双重绝 缘或加强绝缘结构,但对保护接地是否依赖安装条件,不作规定。例如,国产电热毯大多是类电器。类电器上标有特殊符号:“” 类电器则在基本绝缘遭到破坏时,可能与人体接触的金属部份均不会带电,也不会构成对人身的伤害。

5. Ⅲ类电器 这类电器是依靠隔离变压器获得安全特低电压供电来进行防触电保护。同时 在电器内部的电路的任何部位,均不会产生比安全特低电压高的电压。

安全电压编辑国际电工委员会(IEC)出版物中的安全特低电压,是指为防止触电事故而采用的特定电源供 电的电压系列。这个电压的上限值,在任何情况下,两个导体间或任一导体与地之间,均不得超过交流(50500Hz)有效值50V

我国规定安全特低电压额定值等级为42V36V24V12V6V,当电器设备采用了超过24V 的安全电压时,必须采取防止直接接触带电体的保护措施。目前使用的移动式照明灯多属类电器。

家用电器安全防护按防水保护程度可分为4种:普通型器具、防滴型器具、防溅型器具、水 密型器具。家用电淋浴器、快速式电热水器。部分房间用空调器属于防溅型电器,吸尘器有普通型、防溅型电器两种,部分电热毯也有做成水密型电器,标志为IPX0IPX7

开关电源由于体积小、重量轻、效率高等优点,应用已越来越普及。MOSFET由于开关速度快、易并联、所需驱动功率低等优点已成为开关电源最常用的功率开关器件之一。而驱动电路的好坏直接影响开关电源工作的可靠性及性能指标。一个好的MOSFET驱动电路的要求是:

(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡;

(2)开关管导通期间驱动电路能保证MOSFET栅源极间电压保持稳定使可靠导通;

(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断;

(4)关断期间驱动电路最好能提供一定的负电压避免受到干扰产生误导通;

(5)另外要求驱动电路结构简单可靠,损耗小,最好有隔离。

本文介绍并讨论分析一下作者在研制开关电源中使用的几种结构简单可行的MOSFET管驱动电路。

几种MOSFET驱动电路介绍及分析

不隔离的互补驱动电路

(a)为常用的小功率驱动电路,简单可靠成本低。适用于不要求隔离的小功率开关设备。图1(b)所示驱动电路开关速度很快,驱动能力强,为防止俩个MOSFET管直通,通常串接一个0.5小电阻用于限流,该电路适用于不要求隔离的中功率开关设备。这两种电路结构特简单。

功率MOSFET属于电压型控制器件,只要栅极和源极之间施加的电压超过其阈值电压就会导通。由于MOSFET存在结电容,关断时其漏源两端电压的突然上升将会通过结电容在栅源两端产生干扰电压。常用的互补驱动电路的关断回路阻抗小,关断速度较快,但它不能提供负压,故其抗干扰性较差。为了提高电路的抗干扰性,可在此种驱动电路的基础上增加一级由V1V2R组成的电路,产生一个负压,电路原理图如图2(a)所示。

V1导通时,V2关断,两个MOSFET中的上管的栅、源极放电,下管的栅、源极充电,即上管关断、下管导通,则被驱动的功率管关断;反之V1关断时,V2导通,上管导通,下管关断,使驱动的管子导通。因为上下两个管子的栅、源极通过不同的回路弃、放电,包含有V2的回路由于V2会不断退出饱和直至关断,所以对于S1而言导通比关断要慢,对于S2而言导通比关断要快,所以两管发热程度也不完全一样,S1S2发热要严重。

该驱动电路的缺点是需要双电源,且由于R的取值不能过大,否则会使V1深度饱和,影响关断速度,所以R上会有一定的损耗。

还有一种与其相类似的电路如图2(b)所示,改进之处在于它只需要单电源。其产生的负压由5.2V的稳压管提供。同时PNP管换成NPN管。在该电路中的两个MOSFET,上管的发热情况要比下管较轻,其工作原理同上面分析的驱动电路,故不再赘述。

隔离的驱动电路

(1)正激式驱动电路

电路原理图如图3(a)所示,N3为去磁绕组,S2为所驱动的功率管。R2为防止功率管栅极、源极端电压振荡的一个阻尼电阻。因变压器漏感较小,且从速度方面考虑,一般R2较小,故在分析中忽略不计。其工作波形分为两种情况,一种为去磁绕组导通的情况,见图4(a);一种为去磁绕组不导通的情况,见图4(b)

等值电路图如图3(b)所示,脉冲变压器的副边并联电阻R1,它做为正激式变换器的假负载,用于消除关断期间输出电压发生振荡而误导通,见图5。同时它还可作为功率MOSFET关断时的能量泄放回路。该驱动电路的导通速度主要与被驱动的S2栅、 源极等效输入电容的大小、S1的驱动信号的速度以及S1所能提供的电流大小有关。由仿真及分析可知,占空比D越小、R1越大、L越大,磁化电流越小,U1值越小,关断速度越慢。

该电路具有以下优点:电路结构简单可靠,实现了隔离驱动。只需单电源即可提供导通时正、关断时负压。占空比固定时,通过合理的参数设计,此驱动电路也具有较快的开关速度。该电路存在的缺点:一是由于隔离变压器副边需要一个假负载防震荡,故该电路损耗较大;二是当占空比变化时关断速度变化加大。脉宽较窄时,由于是贮存的能量减少导致MOSFET栅极的关断速度变慢。表1为不同占空比时关断时间toff(驱动电压从10伏下降到0伏的时间)内变化情况。

(2)有隔离变压器的互补驱动电路

如图6(a)所示,V1V2为互补工作,电容C起隔离直流的作用,T1为高频、高磁率的磁环或磁罐。导通时隔离变压器上的电压为(1-D)Ui、关断时为DUi,若主功率管S可靠导通电压为12V,则隔离变压器原副边匝比N1/N212/(1-D)/Ui。为保证导通期间GS电压稳定C值可稍取大些。实验波形见图7(a)。该电路具有以下优点:

电路结构较简单可靠,具有电气隔离作用。当脉宽变化时,驱动的关断能力不会随着变化。

该电路只需一个电源,即为单电源工作。隔直电容C的作用可以在关断所驱动的管子时提供一个负压,从而加速了功率管的关断,且有较高的抗干扰能力。

不同占空比时toff的变化情况

但该电路所存在的一个较大缺点是输出电压的幅值会随着占空比的变化而变化。当D较小时,负向电压小, 该电路的抗干扰性变差,且正向电压较高,应该注意使其幅值不超过MOSFET栅极的允许电压。当D大于0.5时驱动电压正向电压小于其负向电压,此时应该注意使其负电压值不超过MOSFET栅极的允许电压。所以该电路比较适用于占空比固定或占空比变化范围不大以及占空比小于0.5的场合。

6(b)为占空比大于0.5时适用的驱动电路,其中Z2稳压二极管,此时副边绕组负电压值较大,Z2的稳压值为所需的负向电压值,超过部分电压降在电容C2,其实验波形见图7(b)

(3)集成芯片UC3724/3725构成的驱动电路

其中UC3724用来产生高频载波信号,载波频率由电容CT和电阻RT决定。一般载波频率小于600kHz,4脚和6脚两端产生高频调制波,经高频小磁环变压器隔离后送到UC3725芯片78两脚经UC3725进行解调后得到驱动信号,UC3725内部有一肖特基整流桥同时将78脚的高频调制波整流成一直流电压供驱动所需功率。

一般来说载波频率越高驱动延时越小,但太高抗干扰性变差;隔离变压器磁化电感越大磁化电流越小,UC3724发热越少,但太大使匝数增多导致寄生参数影响变大,同样会使抗干扰能力降低。故根据实验研究得出:对于开关频率小于100kHz的信号一般取(400500)kHz载波频率较好,变压器选用较高磁导如5K7K等高频环形磁芯,其原边磁化电感大小约1毫亨左右为好。 这种驱动电路仅适合于信号频率小于100kHz场合,因信号频率相对载波频率太高的话,相对延时太多,且所需驱动功率增大,UC3724UC3725芯片发热厉害温升较高,100kHz以上开关频率仅对较小极电容的MOSFET才可以。对于1kVA左右开关频率小于100kHz场合,它是一种性能良好的驱动电路。该电路具有以下特点:单电源工作,控制信号与驱动实现隔离,结构简单尺寸较小,尤其适用于占空比变化莫测或信号频率也变化的场合。

 



责任编辑:Davia

【免责声明】

1、本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系拍明芯城(marketing@iczoom.com),本方将及时处理。

2、本文的引用仅供读者交流学习使用,不涉及商业目的。

3、本文内容仅代表作者观点,拍明芯城不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。

4、如需转载本方拥有版权的文章,请联系拍明芯城(marketing@iczoom.com)注明“转载原因”。未经允许私自转载拍明芯城将保留追究其法律责任的权利。

拍明芯城拥有对此声明的最终解释权。

标签: 驱动电路

相关资讯